A concerted rotation algorithm for atomistic Monte Carlo simulation of polymer melts and glasses

We develop and test a new elementary Monte Carlo move for use in the efficient simulation of polymer systems. The move consists of a concerted rotation around up to seven adjacent skeletal bonds that leaves the rest of the chain unaffected. No assumption is made concerning the backbone geometry other than that bond lengths and bond angles are held constant during the elementary move. Special sampling techniques are needed because the new move involves a correlated change in seven degrees of freedom along the chain backbone. We use the new move in conjunction with reptation in an isothermal-isobaric Monte Carlo simulation of a bulk tetracosane melt system and find that it improves computational efficiency relative to a purely reptation-based Monte Carlo scheme. Comparisons are also made between a concerted rotation-based Monte Carlo simulation and a molecular dynamics simulation of an oligomer of atactic polypropylene.

[1]  Åke Björck,et al.  Numerical Methods , 1995, Handbook of Marine Craft Hydrodynamics and Motion Control.

[2]  H. Wako,et al.  Monte Carlo study on local and small-amplitude conformational fluctuation in hen egg white lysozyme. , 2009, International journal of peptide and protein research.

[3]  M. Ediger,et al.  Cooperativity of local conformational dynamics in simulations of polyisoprene and polyethylene , 1992 .

[4]  Juan J. de Pablo,et al.  Simulation of polyethylene above and below the melting point , 1992 .

[5]  Doros N. Theodorou,et al.  Molecular dynamics simulation of a glassy polymer surface , 1991 .

[6]  Kurt Kremer,et al.  Structure-property correlation of polymers, a Monte Carlo approach , 1991 .

[7]  M. Ediger,et al.  Brownian dynamics simulations of local motions in polyisoprene , 1991 .

[8]  J. H. R. Clarke,et al.  A loose-coupling, constant-pressure, molecular dynamics algorithm for use in the modelling of polymer materials , 1991 .

[9]  D. Theodorou,et al.  Atomistic simulation of a glassy polymer surface , 1990 .

[10]  J. I. Siepmann,et al.  A method for the direct calculation of chemical potentials for dense chain systems , 1990 .

[11]  Richard H. Boyd,et al.  An off-lattice constant-pressure simulation of liquid polymethylene , 1989 .

[12]  R. Roe,et al.  Molecular dynamics simulation of polymer liquid and glass. 3. Chain conformation , 1989 .

[13]  R. Roe,et al.  Molecular dynamics simulation of polymer liquid and glass. II. Short range order and orientation correlation , 1988 .

[14]  Kurt Kremer,et al.  Monte Carlo simulation of lattice models for macromolecules , 1988 .

[15]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[16]  David Rigby,et al.  Molecular dynamics simulation of polymer liquid and glass. I. Glass transition , 1987 .

[17]  H. Meirovitch,et al.  Scanning method as an unbiased simulation technique and its application to the study of self-attracting random walks. , 1985, Physical review. A, General physics.

[18]  U. Suter,et al.  Detailed molecular structure of a vinyl polymer glass , 1985 .

[19]  Hagai Meirovitch,et al.  Efficient dynamical Monte Carlo method for dense polymer systems , 1984 .

[20]  Paolo Corradini,et al.  A computer model of molecular arrangement in a n‐paraffinic liquid , 1980 .

[21]  E. Helfand,et al.  Brownian Dynamics Study of Polymer Conformational Transitions , 1979 .

[22]  H. Morawetz Some Applications of Fluorimetry to Synthetic Polymer Studies , 1979, Science.

[23]  Harold A. Scheraga,et al.  On the Use of Classical Statistical Mechanics in the Treatment of Polymer Chain Conformation , 1976 .

[24]  M. Volkenstein,et al.  Statistical mechanics of chain molecules , 1970 .

[25]  N. Go,et al.  Ring Closure and Local Conformational Deformations of Chain Molecules , 1970 .

[26]  A. W. Rosenbluth,et al.  MONTE CARLO CALCULATION OF THE AVERAGE EXTENSION OF MOLECULAR CHAINS , 1955 .

[27]  JtRN Ilja SIEPMANNt Conflgurational bias Monte Carlo: a new sampling scheme for flexible chains , 2006 .

[28]  R. Roe Computer simulation of polymers , 1991 .

[29]  B. Montgomery Pettitt,et al.  Molecular dynamics with a variable number of molecules , 1991 .

[30]  I. Bahar,et al.  Comparison of Dynamic Rotational Isomeric State Results with Previous Expressions for Local Chain Motion , 1989 .

[31]  Ulrich W. Suter,et al.  Atomistic modeling of mechanical properties of polymeric glasses , 1986 .

[32]  Jean-Paul Ryckaert,et al.  Molecular dynamics of liquid n-butane near its boiling point , 1975 .