Some thoughts on pseudoprimes
暂无分享,去创建一个
[1] Carl Pomerance. A note on Carmichael numbers in residue classes , 2021 .
[2] C. Pomerance,et al. COUNTING INTEGERS WITH A SMOOTH TOTIENT , 2018, The Quarterly Journal of Mathematics.
[3] Emily Riemer. Pseudoprimes and Carmichael Numbers , 2016 .
[4] KAISA MATOMÄKI. CARMICHAEL NUMBERS IN ARITHMETIC PROGRESSIONS , 2013, Journal of the Australian Mathematical Society.
[5] Thomas Wright,et al. Infinitely many Carmichael numbers in arithmetic progressions , 2012, 1212.5850.
[6] L. T'oth. On the number of cyclic subgroups of a finite abelian group , 2012, 1203.6201.
[7] Glyn Harman. WATT'S MEAN VALUE THEOREM AND CARMICHAEL NUMBERS , 2008 .
[8] Glyn Harman,et al. On the Number of Carmichael Numbers up to x , 2005 .
[9] Matt Green. The Distribution of Pseudoprimes , 2003 .
[10] András Sárközy,et al. Unsolved problems in number theory , 2001, Period. Math. Hung..
[11] A. Harles. Sieve Methods , 2001 .
[12] N. Sloane,et al. The Primary Pretenders , 2002, math/0207180.
[13] C. Pomerance,et al. There are infinitely many Carmichael numbers , 1994 .
[14] A. Ivic. Sum of reciprocals of the largest prime factor of an integer , 1981 .
[15] Louis Monier,et al. Evaluation and Comparison of Two Efficient Probabilistic Primality Testing Algorithms , 1980, Theor. Comput. Sci..
[16] Aleksandar Ivić,et al. Topics in arithmetical functions : asymptotic formulae for sums of reciprocals of arithmetical functions and related results , 1980 .
[17] A. Rotkiewicz. On the pseudoprimes of the form ax + b , 1967 .
[18] N. G. W. H. Beeger. On Even Numbers m Dividing 2 m -2 , 1951 .
[19] P. Erdös. A generalization of a theorem of besicovitch , 1936 .
[20] Václav Šimerka. Zbytky z arithmetické posloupnosti , 2022 .