Petrographic Methods of Examining Hardened Concrete: A Petrographic Manual. Revised 2004

This manual provides a comprehensive discussion of equipment and techniques that have been found useful in performing petrographic examinations of hardened concrete and its constituent materials. It includes an introduction and chapters on equipment; general initial procedures; cracks; preparation of specimens; voids (including determination of the air-void system); determination of volumetric proportions of constituents; examination with the stereomicroscope; the water-cementitious materials ratio; alkali-aggregate reactions; cementitious materials; and examinations with the petrographic, polarizing/epifluorescence, and scanning electron microscopes. An extensive reading list, glossary, and five appendixes are included.

[1]  D Stephen Lane,et al.  Alkali-silica reactivity in Virginia , 1994 .

[2]  Emmanuel K. Attiogbe,et al.  MEAN SPACING OF AIR VOIDS IN HARDENED CONCRETE , 1993 .

[3]  H. N. Walker The stripping of penetration 85-100 asphalt from silicate aggregate rocks : a laboratory study. , 1972 .

[4]  A. A. Levison,et al.  Investigation of Causes of Delayed Expansion of Concrete in Buck Hydroelectric Plant , 1941 .

[5]  W. C. Krumbein,et al.  Manual of sedimentary petrography , 1966 .

[6]  D. Stark,et al.  Petrography of Cementitious Materials , 1994 .

[7]  C Ozyildirim,et al.  COMPARISON OF THE AIR CONTENTS OF FRESHLY MIXED AND HARDENED CONCRETES , 1991 .

[8]  I. Sims,et al.  Concrete Petrography: A Handbook of Investigative Techniques , 1998 .

[9]  Michel Pigeon,et al.  THE USE OF THE FLOW LENGTH CONCEPT TO ASSESS THE EFFICIENCY OF AIR ENTRAINMENT WITH REGARDS TO FROST DURABILITY: PART II--EXPERIMENTAL RESULTS , 1996 .

[10]  Michel Pigeon,et al.  Practical Considerations Pertaining to the Microscopical Determination of Air Void Characteristics of Hardened Concrete (ASTM C 457 Standard) , 1990 .

[11]  池田 安隆,et al.  Sedimentary Rocks , 2019, Dictionary of Geotourism.

[12]  R. Philleo A method for analyzing void distribution in air-entrained concrete , 1983 .

[13]  AN INVESTIGATION OF THE MINIMUM EXPECTED UNCERTAINTY IN THE LINEAR TRAVERSE TECHNIQUE , 1991 .

[14]  R. Howie,et al.  An Introduction to the Rock-Forming Minerals , 1966 .

[15]  P. Wedding,et al.  Formula for Calculating Spacing Factor for Entrained Air Voids , 1980 .

[16]  George D. Guthrie,et al.  A simple environmentally friendly, and chemically specific method for the identification and evaluation of the alkali-silica reaction , 1997 .

[17]  J. E. Backstrom,et al.  Orgin, Evolution, and Effects of the Air Void System in Concrete. Part 1 - Etrained Air in Unhardend Concrete , 1958 .

[18]  D A Whiting,et al.  MANUAL ON CONTROL OF AIR CONTENT IN CONCRETE , 1998 .

[19]  F. Lea The chemistry of cement and concrete , 1970 .

[20]  Hollis N Walker,et al.  REACTION PRODUCTS IN EXPANSION TEST SPECIMENS OF CARBONATE AGGREGATE , 1974 .

[21]  Kenneth C. Torres,et al.  Specimen Preparation for Scanning Electron Microscopy , 1989 .

[22]  Steven H. Kosmatka,et al.  Diagnosis and Control of Alkali-Aggregate Reactions in Concrete , 1997 .

[23]  Marvin H Hilton A brief state-of-the-art review of pneumatically applied concrete or mortar (shotcrete) , 1990 .

[24]  K. D. Tocher,et al.  Petrographic Modal Analysis. , 1957 .

[25]  W. S. MacKenzie,et al.  Atlas of metamorphic rocks and their textures , 1990 .

[26]  Louis V. Pirsson,et al.  Rocks and rock minerals , 1909 .

[27]  P. Stutzman,et al.  SEM Analysis and Computer Modelling of Hydration of Portland Cement Particles , 1994 .

[28]  M H Hilton,et al.  EXPANSION OF REACTIVE CARBONATE ROCKS UNDER RESTRAINT , 1974 .

[29]  Donald R. Schwartz D-cracking of concrete pavements , 1987 .

[30]  J. E. Backstrom,et al.  Origin, Evolution, and Effects of the Air Void System in Concrete. Part 2-Influence of Type and Amount of Air-Entraining Agent* , 1958 .

[31]  D Stark THE HANDBOOK FOR THE IDENTIFICATION OF ALKALII-SILICA REACTIVITY IN HIGHWAY STRUCTURES , 1991 .

[32]  P. Stutzman Applications of Scanning Electron Microscopy in Cement and Concrete Petrography , 1994 .

[33]  Michael D.A. Thomas,et al.  CUSTOM HPC MIXTURES FOR CHALLENGING BRIDGE DESIGN , 1999 .

[34]  H Newlon,et al.  Freezing and Thawing , 1994 .

[35]  J Ryell,et al.  THE UHTHOFF QUARRY ALKALI-CARBONATE ROCK REACTION: A LABORATORY AND FIELD PERFORMANCE STUDY , 1974 .

[36]  W. Wadsworth Petrology of Igneous and Metamorphic Rocks , 1973 .

[37]  David Stark,et al.  Alkali-Silica Reactions in Concrete , 1994 .

[38]  P. Stutzman,et al.  Cement clinker characterization by scanning electron microscopy , 1991 .

[39]  David Stark,et al.  The Moisture Condition of Field Concrete Exhibiting Alkali-Silica Reactivity , 1991, "SP-126: Durability of Concrete: Second International Conference, Montreal, Canada 1991".

[40]  A. B. Poole,et al.  A simple staining technique for the identification of alkali-silica gel in concrete and aggregate , 1988 .

[41]  Rf Gebhardt,et al.  SURVEY OF NORTH AMERICAN PORTLAND CEMENTS: 1994 , 1995 .

[42]  P. Stutzman Serial sectioning of hardened cement paste for scanning electron microscopy , 1990 .

[43]  D F Orchard,et al.  CONCRETE TECHNOLOGY - VOLUME 1 - PROPERTIES OF MATERIALS. 4TH EDITION , 1979 .

[44]  W. S. MacKenzie,et al.  Atlas of igneous rocks and their textures , 1983 .

[45]  E. W. Heinrich Microscopic Identification of Minerals , 1965 .

[46]  M. Pigeon,et al.  Durability of Concrete in Cold Climates , 1995 .

[47]  Donald H. Campbell,et al.  Microscopical examination and interpretation of portland cement and clinker , 1999 .

[48]  A. B. Poole,et al.  A staining technique for the identification of sulphates in aggregates and concretes , 1975, Mineralogical Magazine.

[49]  Je Galloway,et al.  Grading, Shape, and Surface Properties , 1994 .

[50]  A. Winchell,et al.  The microscopical characters of artificial inorganic solid substances : optical properties of artificial minerals , 1964 .

[51]  B. Erlin Methods Used in Petrographic Studies of Concrete , 1966 .

[52]  M. Pigeon,et al.  The Use of the Flow Length Concept to Assess the Efficiency of Air Entrainment with Regards to Frost Durability: Part I—Description of the Test Method , 1996 .

[53]  H. N. Walker,et al.  METHODS AND EQUIPMENT USED IN PREPARING AND EXAMINING FLUORESCENT ULTRATHIN SECTIONS OF PORTLAND CEMENT CONCRETE , 1979 .

[54]  J. Smith,et al.  :Atlas of Rock-Forming Minerals in Thin Section , 1981 .

[55]  P. Grattan-Bellew Laboratory Evaluation of Alkali-Silica Reaction in Concretefrom Saunders Generating Station , 1995 .

[56]  D. Soeder Applications of fluorescence microscopy to study of pores in tight rocks , 1987 .

[57]  R. E. Oesper,et al.  Qualitative analysis by spot tests , 1937 .

[58]  I. T. Young,et al.  Quantitative Microscopy , 1984, Definitions.

[59]  E. Steidtmann Origin of dolomite as disclosed by stains and other methods , 1917 .

[60]  R. C. Mielenz Petrography Applied to Portland-Cement Concrete , 1962 .

[61]  W. S. MacKenzie,et al.  Atlas of Sedimentary Rocks Under the Microscope , 1984 .

[62]  R D Gaynor,et al.  MIXING CONCRETE IN A TRUCK MIXER , 1975 .

[63]  W. C. Smith Microscopy of Ceramics and Cements , 1956, Nature.

[64]  B. Fournier,et al.  A RAPID AUTOCLAVE MORTAR BAR METHOD TO DETERMINE THE POTENTIAL ALKALI-SILICA REACTIVITY OF ST. LAWRENCE LOWLANDS CARBONATE AGGREGATES (QUEBEC, CANADA) , 1991 .

[65]  R. Hooton,et al.  Reduction in Mortar and Concrete Expansion with Reactive Aggregates Due to Alkali Leaching , 1991 .

[66]  A. D. Buck,et al.  ALKALI-SILICA AND ALKALI-CARBONATE REACTIVITY OF SOME AGGREGATES FROM SOUTH DAKOTA, KANSAS, AND MISSOURI , 1964 .

[67]  T. L. Brownyard,et al.  Studies of the Physical Properties of Hardened Portland Cement Paste , 1946 .

[68]  M. Ozol Chapter 35—Shape, Surface Texture, Surface Area, and Coatings , 1978 .

[69]  J. Gillott,et al.  Mechanism of alkali-silica reaction and the significance of calcium hydroxide , 1991 .

[70]  L E Andrews RECORD OF EXPERIMENTAL AIR-ENTRAINED CONCRETE 10 TO 14 YEARS AFTER CONSTRUCTION , 1953 .

[71]  M. Ozol Alkali-Carbonate Rock Reaction , 1994 .

[72]  H N Walker VOID PARAMETERS OF 24 CORES OF CONCRETE REMOVED FROM A CONSOLIDATION TEST STUDY SECTION OF I-64 , 1972 .

[73]  K. Khayat,et al.  Comparison of Air Contents in Fresh and Hardened Concretes Using Different Airmeters , 1991 .

[74]  R. Landgren Unit Weight, Specific Gravity, Absorption, and Surface Moisture , 1994 .

[75]  G. Lawes,et al.  Scanning Electron Microscopy and X-Ray Microanalysis , 1987 .

[76]  Richard C. Mielenz,et al.  Origin, Evolution, and Effects of the Air Void System in Concrete. Part 3 - Influence of Water-Cement Ratio and Compaction* , 1958 .

[77]  U. H. Jakobsen,et al.  Determination of Water-Cement Ratio in Hardened Concrete by Optical Fluorescence Microscopy , 1999, SP-191: Water-Cement Ratio and Other Durability Parameters.

[78]  R. C. Mielenz PETROGRAPHIC EXAMINATION OF CONCRETE AGGREGATES , 1946 .

[79]  R. Weyers,et al.  PRELIMINARY INVESTIGATION OF THE RELATIONSHIP BETWEEN CAPILLARY PORE PRESSURE AND EARLY SHRINKAGE CRACKING OF CONCRETE , 1997 .

[80]  L. Struble,et al.  Epoxy impregnation of hardened cement for microstructural characterization , 1989 .

[81]  F. J. Turner,et al.  Petrography: An Introduction to the Study of Rocks in Thin Section , 1954 .

[82]  D Gress EARLY DISTRESS IN CONCRETE PAVEMENTS , 1997 .

[83]  R. Hooton,et al.  Pore Structure and Permeability , 1994 .

[84]  R. Hooton,et al.  DETERMINATION OF SLAG AND FLY ASH CONTENT IN HARDENED CONCRETE , 1995 .

[85]  R. H. Beauchamp,et al.  Metallographic Methods Applied to Ultrathinning Lunar Rocks, Meteorites, Fossils, and Other Brittle Materials for Optical Microscopy , 1974 .

[86]  W. C. Sherwood,et al.  AN OCCURRENCE OF ALKALI-REACTIVE CARBONATE ROCK IN VIRGINIA , 1962 .

[87]  Bernhardt J. Wuensch,et al.  An introduction to the methods of optical crystallography. , 1961 .

[88]  H Sommer,et al.  The Precision of the Microscopical Determination of the Air-Void System in Hardened Concrete , 1979 .