Unsteady numerical modeling, experimental validation and optimization of a solar air heater based on the second law of thermodynamics using genetic algorithm

[1]  P. Aungkulanon,et al.  An updated review on solar air heating systems , 2022, Sustainable Energy Technologies and Assessments.

[2]  I. Ceylan,et al.  Exergetic, economic and environmental analysis of temperature controlled solar air heater system , 2021, Cleaner Engineering and Technology.

[3]  A. Layek,et al.  Energetic and exergetic based performance evaluation of solar air heater having winglet type roughneѕѕ on absorber surface , 2021 .

[4]  E. Akpinar,et al.  Design, manufacturing, numerical analysis and environmental effects of single-pass forced convection solar air collector , 2021 .

[5]  H. Hassan,et al.  Energy, exergy, and enviroeconomic assessment of double and single pass solar air heaters having a new design absorber , 2021 .

[6]  Eva Barreira,et al.  Emissivity of Building Materials for Infrared Measurements , 2021, Sensors.

[7]  Zhenjun Ma,et al.  Optimisation of a renewable cooling and heating system using an integer-based genetic algorithm, response surface method and life cycle analysis , 2021 .

[8]  R. Senthil,et al.  A review on recent developments in thermal performance enhancement methods of flat plate solar air collector , 2020 .

[9]  M. Matheswaran,et al.  Exergetic investigation and optimization of arc shaped rib roughened solar air heater integrated with fins and baffles , 2020 .

[10]  J. Kaewkhao,et al.  Comparison and Transmission Studies of Commercial Glass and Laminated Glass with PDLC Film for Heat Resistant and Other Building Structure Applications , 2020, Solid State Phenomena.

[11]  A. Sreekumar,et al.  Experimental Studies on Energy and Exergy Analysis of a Single-Pass Parallel Flow Solar Air Heater , 2020, Journal of Solar Energy Engineering.

[12]  M. Eslami,et al.  Bi-objective optimization of photovoltaic-thermal (PV/T) solar collectors according to various weather conditions using genetic algorithm: A numerical modeling , 2019 .

[13]  O. Jaramillo,et al.  Optimal operation of a parabolic solar collector with twisted-tape insert by multi-objective genetic algorithms , 2019 .

[14]  Tolga Ural Experimental performance assessment of a new flat-plate solar air collector having textile fabric as absorber using energy and exergy analyses , 2019 .

[15]  Purvi Chandrakar,et al.  A Comprehensive Review on Performance Prediction of Solar Air Heaters Using Artificial Neural Network , 2019, Annals of Data Science.

[16]  Jagadish,et al.  Modeling and optimization of flat plate solar air collectors: An integrated fuzzy method , 2019, Journal of Renewable and Sustainable Energy.

[17]  W. Liu,et al.  Turbulent heat transfer optimization for solar air heater with variation method based on exergy destruction minimization principle , 2019, International Journal of Heat and Mass Transfer.

[18]  M. Mohanraj,et al.  Experimental thermodynamic analysis of a forced convection solar air heater using absorber plate with pin-fins , 2019, Journal of Thermal Analysis and Calorimetry.

[19]  Alyson Gamble,et al.  Ullmann’s Encyclopedia of Industrial Chemistry , 2019, The Charleston Advisor.

[20]  A. Arabhosseini,et al.  Increasing the energy and exergy efficiencies of a collector using porous and recycling system , 2019, Renewable Energy.

[21]  A. Ebrahimi-Moghadam,et al.  Optimal design of geometrical parameters and flow characteristics for Al2O3/water nanofluid inside corrugated heat exchangers by using entropy generation minimization and genetic algorithm methods , 2019, Applied Thermal Engineering.

[22]  S. Jayaraj,et al.  Performance analysis of a double-pass solar air heater system with asymmetric channel flow passages , 2018, Journal of Thermal Analysis and Calorimetry.

[23]  S. C. Kaushik,et al.  Thermodynamic modelling and performance optimization of trapezoidal thermoelectric cooler using genetic algorithm , 2018 .

[24]  M. Bazargan,et al.  Optimization of flat plate solar air heaters with ribbed surfaces , 2018 .

[25]  S. Şevik,et al.  Energy, exergy, economic and environmental (4E) analyses of flat-plate and V-groove solar air collectors based on aluminium and copper , 2017 .

[26]  G. Kalaiarasi,et al.  Experimental energy and exergy analysis of a flat plate solar air heater with a new design of integrated sensible heat storage , 2016 .

[27]  Xudong Yang,et al.  Study on the thermodynamic characteristic matching property and limit design principle of general flat plate solar air collectors (FPSACs) , 2016 .

[28]  V. Badescu,et al.  Thermal inertia of flat-plate solar collectors in different radiative regimes , 2016 .

[29]  A. Rühl,et al.  Computational design of a heated PMMA window validated by infrared thermography , 2016 .

[30]  Sanjay Agrawal,et al.  Parameter identification of the glazed photovoltaic thermal system using Genetic Algorithm–Fuzzy System (GA–FS) approach and its comparative study , 2015 .

[31]  Arvind Tiwari,et al.  Handbook of Solar Energy , 2015 .

[32]  A. Iranmanesh,et al.  Optimization of a lithium bromide–water solar absorption cooling system with evacuated tube collectors using the genetic algorithm , 2014 .

[33]  C. Ertekin,et al.  Theoretical and experimental investigation of the performance of back-pass solar air heaters , 2014 .

[34]  Johane H. Bracamonte,et al.  Optimal aspect ratios for non-isothermal flat plate solar collectors for air heating , 2013 .

[35]  Farzad Jafarkazemi,et al.  Energetic and exergetic evaluation of flat plate solar collectors , 2013 .

[36]  Arif Hepbasli,et al.  Energy and exergy analyses of porous baffles inserted solar air heaters for building applications , 2013 .

[37]  Hüseyin Benli,et al.  Experimentally derived efficiency and exergy analysis of a new solar air heater having different surface shapes , 2013 .

[38]  Arzu Şencan Şahin,et al.  Optimization of solar air collector using genetic algorithm and artificial bee colony algorithm , 2012, Heat and Mass Transfer.

[39]  M. Abdolzadeh,et al.  Prediction of the optimum slope and surface azimuth angles using the Genetic Algorithm , 2011 .

[40]  I. Miskioglu,et al.  Electrical and thermal conductivity and tensile and flexural properties of carbon nanotube/polycarbonate resins , 2010 .

[41]  Fatih Koçyiğit,et al.  Energy and exergy analysis of a new flat-plate solar air heater having different obstacles on absorber plates , 2010 .

[42]  Hassen T. Dorrah,et al.  Optimal sizing of solar water heating system based on genetic algorithm for aquaculture system , 2010, 2010 International Conference on Chemistry and Chemical Engineering.

[43]  Siddhartha,et al.  Thermal performance optimization of a flat plate solar air heater using genetic algorithm , 2010 .

[44]  Réné Tchinda,et al.  A review of the mathematical models for predicting solar air heaters systems , 2009 .

[45]  S. Kalogirou Solar Energy Engineering: Processes and Systems , 2009 .

[46]  Robert W. Serth,et al.  Process Heat Transfer: Principles, Applications and Rules of Thumb , 2007 .

[47]  Michael R. Korn,et al.  Advances in Polycarbonates , 2005 .

[48]  C. Harper Handbook of Plastics, Elastomers, and Composites , 1996 .

[49]  D. Yogi Goswami,et al.  Principles of Solar Engineering , 1978 .

[50]  M. Ameri,et al.  Conventional and advanced exergy analysis of solar flat plate air collectors , 2018 .

[51]  Faramarz Sarhaddi,et al.  Exergy loss-based efficiency optimization of a double-pass/glazed v-corrugated plate solar air heater , 2016 .

[52]  J. E. Mark,et al.  Physical properties of polymers handbook , 2007 .

[53]  Philip J. Cox,et al.  Physical properties of polymers handbook , 1997 .

[54]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[55]  Pedro España Martínez Termodinámica básica y aplicada , 1984 .