Ultratrace detection of glucose with enzyme-functionalized single nanochannels

A sensitive nano-device for D-glucose detection is prepared by modifying a single conical polymer nanochannel with GOx enzymes. The current–voltage (I–V) characterization suggests that the nano-device responds to D-glucose rather than its enantiomer at concentrations down to 1 nM (10−9 mol L−1). Moreover, the nano-device exhibits good reproducibility and specificity for D-glucose and is an ideal candidate for commercial non-invasive blood glucose meters in the future.

[1]  Wei Guo,et al.  A biomimetic zinc activated ion channel. , 2010, Chemical communications.

[2]  K. Besteman,et al.  Enzyme-Coated Carbon Nanotubes as Single-Molecule Biosensors , 2003 .

[3]  Lei Jiang,et al.  pH gated glucose responsive biomimetic single nanochannels. , 2012, Chemical communications.

[4]  Jugal Kishore Sahoo,et al.  Metal ion affinity-based biomolecular recognition and conjugation inside synthetic polymer nanopores modified with iron-terpyridine complexes. , 2011, Journal of the American Chemical Society.

[5]  Jing‐Juan Xu,et al.  Nanoconfinement effects: glucose oxidase reaction kinetics in nanofluidics. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[6]  Yi-Lun Ying,et al.  Monitoring of an ATP-binding aptamer and its conformational changes using an α-hemolysin nanopore. , 2011, Small.

[7]  Xu Hou,et al.  A biomimetic potassium responsive nanochannel: G-quadruplex DNA conformational switching in a synthetic nanopore. , 2009, Journal of the American Chemical Society.

[8]  Arben Merkoçi,et al.  Nanochannels preparation and application in biosensing. , 2012, ACS nano.

[9]  A. B. Islam,et al.  A Mediator Free Amperometric Bienzymatic Glucose Biosensor Using Vertically Aligned Carbon Nanofibers (VACNFs) , 2011, IEEE Sensors Journal.

[10]  W. Tremel,et al.  Biomolecular conjugation inside synthetic polymer nanopores via glycoprotein-lectin interactions. , 2011, Nanoscale.

[11]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[12]  D. Branton,et al.  Characterization of individual polynucleotide molecules using a membrane channel. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Reimar Spohr,et al.  Diode-like single-ion track membrane prepared by electro-stopping , 2001 .

[14]  Lei Jiang,et al.  Bioinspired ion-transport properties of solid-state single nanochannels and their applications in sensing. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[15]  Wei Guo,et al.  Biomimetic smart nanopores and nanochannels. , 2011, Chemical Society reviews.

[16]  H. Bayley,et al.  Protein Detection by Nanopores Equipped with Aptamers , 2012, Journal of the American Chemical Society.

[17]  O. Khalil,et al.  Non-invasive glucose measurement technologies: an update from 1999 to the dawn of the new millennium. , 2004, Diabetes technology & therapeutics.

[18]  Muhammad Nawaz Tahir,et al.  Hydrogen peroxide sensing with horseradish peroxidase-modified polymer single conical nanochannels. , 2011, Analytical chemistry.

[19]  Richard Barnett Diabetes , 1904, The Lancet.

[20]  A. Lösch Nano , 2012, Ortsregister.

[21]  D. Schomburg,et al.  The 3D structure of glucose oxidase from Aspergillus niger. Implications for the use of GOD as a biosensor enzyme. , 1993, Biosensors & bioelectronics.

[22]  Lei Jiang,et al.  Highly-efficient gating of solid-state nanochannels by DNA supersandwich structure containing ATP aptamers: a nanofluidic IMPLICATION logic device. , 2012, Journal of the American Chemical Society.

[23]  G. W. Small,et al.  Noninvasive glucose sensing. , 2005, Analytical chemistry.

[24]  Andrew G. Glen,et al.  APPL , 2001 .

[25]  Zuzanna S Siwy,et al.  Biosensing with nanofluidic diodes. , 2009, Journal of the American Chemical Society.

[26]  P. Apel,et al.  Effect of nanopore geometry on ion current rectification , 2011, Nanotechnology.

[27]  Lei Jiang,et al.  Signal-on architecture for electrochemical aptasensors based on multiple ion channels. , 2012, Analytical chemistry.

[28]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[29]  Ruo Yuan,et al.  Construction of an amperometric glucose biosensor based on the immobilization of glucose oxidase onto electrodeposited Pt nanoparticles-chitosan composite film , 2012, Bioprocess and Biosystems Engineering.

[30]  M. Ghadiri,et al.  Artificial transmembrane ion channels from self-assembling peptide nanotubes , 1994, Nature.

[31]  Reinhard Neumann,et al.  Biosensing and supramolecular bioconjugation in single conical polymer nanochannels. Facile incorporation of biorecognition elements into nanoconfined geometries. , 2008, Journal of the American Chemical Society.

[32]  I. Sokolov,et al.  Enzyme-functionalized mesoporous silica for bioanalytical applications , 2009, Analytical and bioanalytical chemistry.

[33]  Z. Siwy,et al.  Making nanopores from nanotubes. , 2010, Nature nanotechnology.

[34]  Z. Siwy,et al.  Nanopore analytics: sensing of single molecules. , 2009, Chemical Society reviews.

[35]  Yuanjian Zhang,et al.  Enzymatic reactivity of glucose oxidase confined in nanochannels. , 2014, Biosensors & bioelectronics.

[36]  S. Erramilli,et al.  Silicon-based nanochannel glucose sensor , 2008, 0802.1721.

[37]  Reinhard Neumann,et al.  Sequence-specific recognition of DNA oligomer using peptide nucleic acid (PNA)-modified synthetic ion channels: PNA/DNA hybridization in nanoconfined environment. , 2010, ACS nano.