A Study of Different Modeling Choices For Simulating Platelets Within the Immersed Boundary Method

The Immersed Boundary (IB) method is a widely-used numerical methodology for the simulation of fluid-structure interaction problems. The IB method utilizes an Eulerian discretization for the fluid equations of motion while maintaining a Lagrangian representation of structural objects. Operators are defined for transmitting information (forces and velocities) between these two representations. Most IB simulations represent their structures with piecewise linear approximations and utilize Hookean spring models to approximate structural forces. Our specific motivation is the modeling of platelets in hemodynamic flows. In this paper, we study two alternative representations - radial basis functions (RBFs) and Fourier-based (trigonometric polynomials and spherical harmonics) representations - for the modeling of platelets in two and three dimensions within the IB framework, and compare our results with the traditional piecewise linear approximation methodology. For different representative shapes, we examine the geometric modeling errors (position and normal vectors), force computation errors, and computational cost and provide an engineering trade-off strategy for when and why one might select to employ these different representations.

[1]  Robert Michael Kirby,et al.  Unconditionally stable discretizations of the immersed boundary equations , 2007, J. Comput. Phys..

[2]  M. McPeek,et al.  Modeling Three-Dimensional Morphological Structures Using Spherical Harmonics , 2009, Evolution; international journal of organic evolution.

[3]  Charles S. Peskin,et al.  Modeling prosthetic heart valves for numerical analysis of blood flow in the heart , 1980 .

[4]  J. P. Beyer A computational model of the cochlea using the immersed boundary method , 1992 .

[5]  Kurt Jetter,et al.  Error estimates for scattered data interpolation on spheres , 1999, Math. Comput..

[6]  Natasha Flyer,et al.  Transport schemes on a sphere using radial basis functions , 2007, J. Comput. Phys..

[7]  L. Schumaker,et al.  Scattered data fitting on the sphere , 1998 .

[8]  C. Peskin,et al.  When vortices stick: an aerodynamic transition in tiny insect flight , 2004, Journal of Experimental Biology.

[9]  Holger Wendland,et al.  Direct and Inverse Sobolev Error Estimates for Scattered Data Interpolation via Spherical Basis Functions , 2007, Found. Comput. Math..

[10]  A. Fogelson,et al.  Truncated newton methods and the modeling of complex immersed elastic structures , 1993 .

[11]  ScienceDirect,et al.  Applied numerical mathematics , 1985 .

[12]  Shmuel Rippa,et al.  An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..

[13]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[14]  Ian H. Sloan,et al.  How good can polynomial interpolation on the sphere be? , 2001, Adv. Comput. Math..

[15]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[16]  A. Fogelson A MATHEMATICAL MODEL AND NUMERICAL METHOD FOR STUDYING PLATELET ADHESION AND AGGREGATION DURING BLOOD CLOTTING , 1984 .

[17]  C. Peskin,et al.  A computational fluid dynamics of `clap and fling' in the smallest insects , 2005, Journal of Experimental Biology.

[18]  E. Saff,et al.  Discretizing Manifolds via Minimum Energy Points , 2004 .

[19]  Grady B. Wright,et al.  Scattered Data Interpolation on Embedded Submanifolds with Restricted Positive Definite Kernels: Sobolev Error Estimates , 2010, SIAM J. Numer. Anal..

[20]  Aaron L. Fogelson,et al.  Simulations of chemical transport and reaction in a suspension of cells I: an augmented forcing point method for the stationary case , 2012 .

[21]  C. Peskin,et al.  A three-dimensional computational method for blood flow in the heart. 1. Immersed elastic fibers in a viscous incompressible fluid , 1989 .

[22]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[23]  Robert Dillon,et al.  Modeling Biofilm Processes Using the Immersed Boundary Method , 1996 .

[24]  Gretar Tryggvason,et al.  An Adaptive, Cartesian, Front-Tracking Method for the Motion, Deformation and Adhesion of Circulating Cells , 1998 .

[25]  Elias Balaras,et al.  An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries , 2006, J. Comput. Phys..

[26]  Simon Hubbert,et al.  Interpolation with circular basis functions , 2006, Numerical Algorithms.

[27]  Natasha Flyer,et al.  A radial basis function method for the shallow water equations on a sphere , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[28]  Simon Hubbert,et al.  Lp-error estimates for radial basis function interpolation on the sphere , 2004, J. Approx. Theory.

[29]  Gene H. Golub,et al.  Matrix computations , 1983 .

[30]  Bengt Fornberg,et al.  A Stable Algorithm for Flat Radial Basis Functions on a Sphere , 2007, SIAM J. Sci. Comput..

[31]  Aaron L. Fogelson,et al.  Immersed-boundary-type models of intravascular platelet aggregation☆ , 2008 .

[32]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[33]  Quoc Thong Le Gia,et al.  Approximation of parabolic PDEs on spheres using spherical basis functions , 2005, Adv. Comput. Math..

[34]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[35]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[36]  Alfred Gray,et al.  Modern differential geometry of curves and surfaces with Mathematica (2. ed.) , 1998 .

[37]  Grit Thürmer,et al.  Computing Vertex Normals from Polygonal Facets , 1998, J. Graphics, GPU, & Game Tools.

[38]  L. Fauci,et al.  A computational model of aquatic animal locomotion , 1988 .