A Study of Different Modeling Choices For Simulating Platelets Within the Immersed Boundary Method
暂无分享,去创建一个
Robert Michael Kirby | Grady B. Wright | Varun Shankar | Aaron L. Fogelson | G. Wright | A. Fogelson | R. Kirby | Varun Shankar
[1] Robert Michael Kirby,et al. Unconditionally stable discretizations of the immersed boundary equations , 2007, J. Comput. Phys..
[2] M. McPeek,et al. Modeling Three-Dimensional Morphological Structures Using Spherical Harmonics , 2009, Evolution; international journal of organic evolution.
[3] Charles S. Peskin,et al. Modeling prosthetic heart valves for numerical analysis of blood flow in the heart , 1980 .
[4] J. P. Beyer. A computational model of the cochlea using the immersed boundary method , 1992 .
[5] Kurt Jetter,et al. Error estimates for scattered data interpolation on spheres , 1999, Math. Comput..
[6] Natasha Flyer,et al. Transport schemes on a sphere using radial basis functions , 2007, J. Comput. Phys..
[7] L. Schumaker,et al. Scattered data fitting on the sphere , 1998 .
[8] C. Peskin,et al. When vortices stick: an aerodynamic transition in tiny insect flight , 2004, Journal of Experimental Biology.
[9] Holger Wendland,et al. Direct and Inverse Sobolev Error Estimates for Scattered Data Interpolation via Spherical Basis Functions , 2007, Found. Comput. Math..
[10] A. Fogelson,et al. Truncated newton methods and the modeling of complex immersed elastic structures , 1993 .
[11] ScienceDirect,et al. Applied numerical mathematics , 1985 .
[12] Shmuel Rippa,et al. An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..
[13] C. Peskin. Numerical analysis of blood flow in the heart , 1977 .
[14] Ian H. Sloan,et al. How good can polynomial interpolation on the sphere be? , 2001, Adv. Comput. Math..
[15] C. Peskin. The immersed boundary method , 2002, Acta Numerica.
[16] A. Fogelson. A MATHEMATICAL MODEL AND NUMERICAL METHOD FOR STUDYING PLATELET ADHESION AND AGGREGATION DURING BLOOD CLOTTING , 1984 .
[17] C. Peskin,et al. A computational fluid dynamics of `clap and fling' in the smallest insects , 2005, Journal of Experimental Biology.
[18] E. Saff,et al. Discretizing Manifolds via Minimum Energy Points , 2004 .
[19] Grady B. Wright,et al. Scattered Data Interpolation on Embedded Submanifolds with Restricted Positive Definite Kernels: Sobolev Error Estimates , 2010, SIAM J. Numer. Anal..
[20] Aaron L. Fogelson,et al. Simulations of chemical transport and reaction in a suspension of cells I: an augmented forcing point method for the stationary case , 2012 .
[21] C. Peskin,et al. A three-dimensional computational method for blood flow in the heart. 1. Immersed elastic fibers in a viscous incompressible fluid , 1989 .
[22] Bengt Fornberg,et al. A practical guide to pseudospectral methods: Introduction , 1996 .
[23] Robert Dillon,et al. Modeling Biofilm Processes Using the Immersed Boundary Method , 1996 .
[24] Gretar Tryggvason,et al. An Adaptive, Cartesian, Front-Tracking Method for the Motion, Deformation and Adhesion of Circulating Cells , 1998 .
[25] Elias Balaras,et al. An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries , 2006, J. Comput. Phys..
[26] Simon Hubbert,et al. Interpolation with circular basis functions , 2006, Numerical Algorithms.
[27] Natasha Flyer,et al. A radial basis function method for the shallow water equations on a sphere , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[28] Simon Hubbert,et al. Lp-error estimates for radial basis function interpolation on the sphere , 2004, J. Approx. Theory.
[29] Gene H. Golub,et al. Matrix computations , 1983 .
[30] Bengt Fornberg,et al. A Stable Algorithm for Flat Radial Basis Functions on a Sphere , 2007, SIAM J. Sci. Comput..
[31] Aaron L. Fogelson,et al. Immersed-boundary-type models of intravascular platelet aggregation☆ , 2008 .
[32] Gregory E. Fasshauer,et al. Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.
[33] Quoc Thong Le Gia,et al. Approximation of parabolic PDEs on spheres using spherical basis functions , 2005, Adv. Comput. Math..
[34] L. Trefethen. Spectral Methods in MATLAB , 2000 .
[35] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[36] Alfred Gray,et al. Modern differential geometry of curves and surfaces with Mathematica (2. ed.) , 1998 .
[37] Grit Thürmer,et al. Computing Vertex Normals from Polygonal Facets , 1998, J. Graphics, GPU, & Game Tools.
[38] L. Fauci,et al. A computational model of aquatic animal locomotion , 1988 .