Differential Evolution-Based Fusion for Results Diversification of Web Search

Results diversification has been a key research issue on web search in the last couple of years. Some recent research work suggests that data fusion, especially linear combination of multiple results, is a good option of dealing with this problem. However, there are many different ways of setting weights. In this paper, we propose a differential evolution-based method to find optimal weights in the weight space for the linear combination method. Experimental results show that the proposed method is effective compared with the state-of-the-art techniques.

[1]  Shengli Wu,et al.  The Experiments with the Linear Combination Data Fusion Method in Information Retrieval , 2008, APWeb.

[2]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[3]  Garrison W. Cottrell,et al.  Fusion Via a Linear Combination of Scores , 1999, Information Retrieval.

[4]  Olivier Chapelle,et al.  Expected reciprocal rank for graded relevance , 2009, CIKM.

[5]  Oren Kurland,et al.  Cluster-based fusion of retrieved lists , 2011, SIGIR.

[6]  Luo Si,et al.  Mixture model with multiple centralized retrieval algorithms for result merging in federated search , 2012, SIGIR '12.

[7]  M. de Rijke,et al.  Fusion helps diversification , 2014, SIGIR.

[8]  Charles L. A. Clarke,et al.  Novelty and diversity in information retrieval evaluation , 2008, SIGIR '08.

[9]  W. Bruce Croft,et al.  Diversity by proportionality: an election-based approach to search result diversification , 2012, SIGIR '12.

[10]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[11]  Charles L. A. Clarke,et al.  Reciprocal rank fusion outperforms condorcet and individual rank learning methods , 2009, SIGIR.

[12]  Javed A. Aslam,et al.  Models for metasearch , 2001, SIGIR '01.

[13]  Shengli Wu,et al.  Performance prediction of data fusion for information retrieval , 2006, Inf. Process. Manag..

[14]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[15]  Sreenivas Gollapudi,et al.  Diversifying search results , 2009, WSDM '09.

[16]  Craig MacDonald,et al.  Exploiting query reformulations for web search result diversification , 2010, WWW '10.

[17]  Prasenjit Majumder,et al.  Learning combination weights in data fusion using Genetic Algorithms , 2015, Inf. Process. Manag..

[18]  Xueqi Cheng,et al.  Learning for search result diversification , 2014, SIGIR.

[19]  Jade Goldstein-Stewart,et al.  The Use of MMR, Diversity-Based Reranking for Reordering Documents and Producing Summaries , 1998, SIGIR Forum.

[20]  Thorsten Joachims,et al.  Predicting diverse subsets using structural SVMs , 2008, ICML '08.

[21]  Xueqi Cheng,et al.  Learning Maximal Marginal Relevance Model via Directly Optimizing Diversity Evaluation Measures , 2015, SIGIR.

[22]  Edward A. Fox,et al.  Combination of Multiple Searches , 1993, TREC.

[23]  Shengli Wu,et al.  Search result diversification via data fusion , 2014, SIGIR.

[24]  Javed A. Aslam,et al.  Condorcet fusion for improved retrieval , 2002, CIKM '02.

[25]  Garrison W. Cottrell,et al.  Automatic combination of multiple ranked retrieval systems , 1994, SIGIR '94.

[26]  Milad Shokouhi,et al.  LambdaMerge: merging the results of query reformulations , 2011, WSDM '11.