Floquet Fractional Chern Insulators and Competing Phases in Twisted Bilayer Graphene

We study the many-body physics in twisted bilayer graphene coupled to periodic driving of a circularly polarized light when electron-electron interactions are taken into account. In the limit of high driving frequency $\Omega$, we use Floquet theory to formulate the system by an effective static Hamiltonian truncated to the order of $\Omega^{-2}$, which consists of a single-electron part and the screened Coulomb interaction. We numerically simulate this effective Hamiltonian by extensive exact diagonalization in the parameter space spanned by the twist angle and the driving strength. Remarkably, in a wide region of the parameter space, we identify Floquet fractional Chern insulator states in the partially filled Floquet valence bands. We characterize these topologically ordered states by ground-state degeneracy, spectral flow, and entanglement spectrum. In regions of the parameter space where fractional Chern insulator states are absent, we find topologically trivial charge density waves and band-dispersion-induced Fermi liquids which strongly compete with fractional Chern insulator states.

[1]  E. Bergholtz,et al.  Quantum metric induced phases in Moiré materials , 2022, Physical Review Research.

[2]  H. Bahlouli,et al.  Chiral limits and effect of light on the Hofstadter butterfly in twisted bilayer graphene , 2021, Physical Review B.

[3]  A. Yacoby,et al.  Field-tuned and zero-field fractional Chern insulators in magic angle graphene , 2021, 2112.13837.

[4]  Peizhe Tang,et al.  Light-induced emergent phenomena in 2D materials and topological materials , 2021, Nature Reviews Physics.

[5]  R. Roy,et al.  Fractional Chern insulators with a non-Landau level continuum limit , 2021, Physical Review B.

[6]  Jie Wang,et al.  Hierarchy of Ideal Flatbands in Chiral Twisted Multilayer Graphene Models. , 2021, Physical review letters.

[7]  A. Yacoby,et al.  Fractional Chern insulators in magic-angle twisted bilayer graphene , 2021, Nature.

[8]  J. LeBlanc,et al.  Floquet engineering and nonequilibrium topological maps in twisted trilayer graphene , 2021, Physical Review B.

[9]  A. Millis,et al.  Exact Landau Level Description of Geometry and Interaction in a Flatband. , 2021, Physical review letters.

[10]  N. Regnault,et al.  Twisted bilayer graphene. VI. An exact diagonalization study at nonzero integer filling , 2021, Physical Review B.

[11]  T. Ozawa,et al.  Relations between topology and the quantum metric for Chern insulators , 2021, Physical Review B.

[12]  G. Fiete,et al.  Low-frequency and Moiré–Floquet engineering: A review , 2021 .

[13]  C. Eckhardt,et al.  Light-matter coupling and quantum geometry in moiré materials , 2021, Physical Review B.

[14]  X. Dai,et al.  Theories for the correlated insulating states and quantum anomalous Hall effect phenomena in twisted bilayer graphene , 2021 .

[15]  A. Läuchli,et al.  Interplay of fractional Chern insulator and charge density wave phases in twisted bilayer graphene , 2020, 2012.09829.

[16]  G. Fiete,et al.  Floquet engineering of topological transitions in a twisted transition metal dichalcogenide homobilayer , 2020, 2011.10948.

[17]  J. Shan,et al.  Correlated insulating states at fractional fillings of moiré superlattices , 2020, Nature.

[18]  Ipsita Mandal,et al.  Correlated insulators in twisted bilayer graphene , 2020, Physical Review B.

[19]  E. Andrei,et al.  Graphene bilayers with a twist , 2020, Nature Materials.

[20]  Jin-Hua Gao,et al.  Valley-selective Floquet Chern flat bands in twisted multilayer graphene , 2020, 2007.15489.

[21]  G. Fiete,et al.  Floquet engineering of twisted double bilayer graphene , 2020, Physical Review Research.

[22]  M. Katsnelson Twisted bilayer graphene , 2020, The Physics of Graphene.

[23]  G. Fiete,et al.  Effective Floquet Hamiltonians for periodically driven twisted bilayer graphene , 2020, Physical Review B.

[24]  G. Fiete,et al.  Floquet engineering of interlayer couplings: Tuning the magic angle of twisted bilayer graphene at the exit of a waveguide , 2020, Physical Review B.

[25]  T. Senthil,et al.  Chern bands of twisted bilayer graphene: Fractional Chern insulators and spin phase transition , 2019, Physical Review Research.

[26]  A. Vishwanath,et al.  Fractional Chern insulator states in twisted bilayer graphene: An analytical approach , 2019, 1912.09634.

[27]  E. Bergholtz,et al.  Particle-Hole Duality, Emergent Fermi Liquids, and Fractional Chern Insulators in Moiré Flatbands. , 2019, Physical review letters.

[28]  A. Vishwanath,et al.  Ground State and Hidden Symmetry of Magic-Angle Graphene at Even Integer Filling , 2019, 1911.02045.

[29]  G. Refael,et al.  Optically induced flat bands in twisted bilayer graphene , 2019, Physical Review B.

[30]  H. Fertig,et al.  Floquet-engineered topological flat bands in irradiated twisted bilayer graphene , 2019, 1910.04711.

[31]  T. Senthil,et al.  Ferromagnetism in Narrow Bands of Moiré Superlattices. , 2019, Physical review letters.

[32]  J. Zhu,et al.  Intrinsic quantized anomalous Hall effect in a moiré heterostructure , 2019, Science.

[33]  Á. Rubio,et al.  Topological Floquet engineering of twisted bilayer graphene , 2019, Physical Review Research.

[34]  Kenji Watanabe,et al.  Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene , 2019, Nature.

[35]  U. Duerig,et al.  The dielectric constant of a bilayer graphene interface , 2019, Nanoscale advances.

[36]  T. Senthil,et al.  Twisted bilayer graphene aligned with hexagonal boron nitride: Anomalous Hall effect and a lattice model , 2019, Physical Review Research.

[37]  M. Zaletel,et al.  Mechanism for Anomalous Hall Ferromagnetism in Twisted Bilayer Graphene. , 2019, Physical review letters.

[38]  M. Kastner,et al.  Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene , 2019, Science.

[39]  A. Cavalleri,et al.  Light-induced anomalous Hall effect in graphene , 2018, Nature physics.

[40]  D. Graf,et al.  Tuning superconductivity in twisted bilayer graphene , 2018, Science.

[41]  F. Guinea,et al.  Electrostatic effects, band distortions, and superconductivity in twisted graphene bilayers , 2018, Proceedings of the National Academy of Sciences.

[42]  Yuan Cao,et al.  Nearly flat Chern bands in moiré superlattices , 2018, Physical Review B.

[43]  T. Koretsune,et al.  Maximally Localized Wannier Orbitals and the Extended Hubbard Model for Twisted Bilayer Graphene , 2018, Physical Review X.

[44]  E. Kaxiras,et al.  Correlated insulator behaviour at half-filling in magic-angle graphene superlattices , 2018, Nature.

[45]  M. Koshino,et al.  Lattice relaxation and energy band modulation in twisted bilayer graphene , 2017, 1706.03908.

[46]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[47]  W. De Roeck,et al.  Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems , 2015, 1510.03405.

[48]  C. Weitenberg,et al.  Experimental reconstruction of the Berry curvature in a Floquet Bloch band , 2015, Science.

[49]  Tomotaka Kuwahara,et al.  Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. , 2015, Physical review letters.

[50]  A. Eckardt,et al.  Role of real-space micromotion for bosonic and fermionic Floquet fractional Chern insulators , 2015, 1504.03583.

[51]  M. Katsnelson,et al.  Relaxation of moiré patterns for slightly misaligned identical lattices: graphene on graphite , 2015, 1503.02540.

[52]  A. Eckardt,et al.  High-frequency approximation for periodically driven quantum systems from a Floquet-space perspective , 2015, 1502.06477.

[53]  A. Oshiyama,et al.  Atomic corrugation and electron localization due to Moiré patterns in twisted bilayer graphenes , 2014 .

[54]  T. S. Jackson,et al.  Geometric stability of topological lattice phases , 2014, Nature Communications.

[55]  L. D'alessio,et al.  Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering , 2014, 1407.4803.

[56]  F. Guinea,et al.  Spontaneous strains and gap in graphene on boron nitride , 2014, 1404.7777.

[57]  A. Grushin,et al.  Floquet fractional Chern insulators. , 2014, Physical review letters.

[58]  N. Goldman,et al.  Periodically Driven Quantum Systems: Effective Hamiltonians and Engineered Gauge Fields , 2014, 1404.4373.

[59]  R. Gorbachev Van der Waals heterostructures , 2014, Nature Reviews Methods Primers.

[60]  S. Adam,et al.  Origin of band gaps in graphene on hexagonal boron nitride , 2014, Nature Communications.

[61]  Z. Qiao,et al.  Ab-Initio Theory of Moiré Superlattice Bands in Layered Two-Dimensional Materials , 2013, 1312.7723.

[62]  P. Jarillo-Herrero,et al.  Observation of Floquet-Bloch States on the Surface of a Topological Insulator , 2013, Science.

[63]  N. Regnault,et al.  Haldane statistics for fractional Chern insulators with an arbitrary Chern number , 2013, 1310.6354.

[64]  E. Bergholtz,et al.  Topological Flat Band Models and Fractional Chern Insulators , 2013, 1308.0343.

[65]  T. Taniguchi,et al.  Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure , 2013, Science.

[66]  R. Roy,et al.  Fractional quantum Hall physics in topological flat bands , 2013, 1302.6606.

[67]  P. Moon,et al.  Optical Absorption in Twisted Bilayer Graphene , 2013, 1302.5218.

[68]  Roderich Moessner,et al.  Floquet topological insulators , 2012, 1211.5623.

[69]  R. Roy Band geometry of fractional topological insulators , 2012, 1208.2055.

[70]  R. Moessner,et al.  Hierarchy of fractional Chern insulators and competing compressible states. , 2012, Physical review letters.

[71]  N. Regnault,et al.  Zoology of fractional Chern insulators , 2011, 1111.1172.

[72]  N. Regnault,et al.  Emergent many-body translational symmetries of Abelian and non-Abelian fractionally filled topological insulators , 2011, 1110.4488.

[73]  B. Potapkin,et al.  Commensurate-incommensurate phase transition in bilayer graphene , 2011, 1108.2254.

[74]  B. Andrei Bernevig,et al.  Fractional Chern Insulator , 2011, 1105.4867.

[75]  Liang Fu,et al.  Transport properties of nonequilibrium systems under the application of light: Photoinduced quantum Hall insulators without Landau levels , 2011, 1104.4636.

[76]  Liang Jiang,et al.  Majorana fermions in equilibrium and in driven cold-atom quantum wires. , 2011, Physical review letters.

[77]  R. Cheng Quantum Geometric Tensor (Fubini-Study Metric) in Simple Quantum System: A pedagogical Introduction , 2010, 1012.1337.

[78]  Takuya Kitagawa,et al.  Topological Characterization of Periodically-Driven Quantum Systems , 2010, 1010.6126.

[79]  R. Bistritzer,et al.  Moiré bands in twisted double-layer graphene , 2010, Proceedings of the National Academy of Sciences.

[80]  Gil Refael,et al.  Floquet topological insulator in semiconductor quantum wells , 2010, 1008.1792.

[81]  N. Regnault,et al.  Extracting excitations from model state entanglement. , 2010, Physical review letters.

[82]  Hideo Aoki,et al.  Photovoltaic Hall effect in graphene , 2008, 0807.4767.

[83]  Hui Li,et al.  Entanglement spectrum as a generalization of entanglement entropy: identification of topological order in non-Abelian fractional quantum Hall effect states. , 2008, Physical review letters.

[84]  S. Fishman,et al.  Effective Hamiltonians for periodically driven systems , 2003, nlin/0301033.

[85]  R. Laughlin Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations , 1983 .

[86]  S. Dorris,et al.  Superconductors , 2008, Physics Subject Headings (PhySH).