Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo

In layer 2/3 pyramidal neurons of barrel cortex in vivo, calcium ion concentration ([Ca2+]) transients in apical dendrites evoked by sodium action potentials are limited to regions close to the soma. To study the mechanisms underlying this restricted pattern of calcium influx, we combined two–photon imaging of dendritic [Ca2+] dynamics with dendritic membrane potential measurements. We found that sodium action potentials attenuated and broadened rapidly with distance from the soma. However, dendrites of layer 2/3 cells were electrically excitable, and direct current injections could evoke large [Ca2+] transients. The restricted pattern of dendritic [Ca2+] transients is therefore due to a failure of sodium action–potential propagation into dendrites. Also, stimulating subcortical activating systems by tail pinch can enhance dendritic [Ca2+] influx induced by a sensory stimulus by increasing cellular excitability, consistent with the importance of these systems in plasticity and learning.

[1]  D. Johnston,et al.  Slow Recovery from Inactivation of Na+ Channels Underlies the Activity-Dependent Attenuation of Dendritic Action Potentials in Hippocampal CA1 Pyramidal Neurons , 1997, The Journal of Neuroscience.

[2]  J. Lambert,et al.  Regenerative properties of pyramidal cell dendrites in area CA1 of the rat hippocampus. , 1995, The Journal of physiology.

[3]  B. Connors,et al.  Intrinsic firing patterns of diverse neocortical neurons , 1990, Trends in Neurosciences.

[4]  B. Sakmann,et al.  Action potential initiation and propagation in rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[5]  M. Meister,et al.  Synchronous period-doubling in flicker vision of salamander and man. , 1998, Journal of neurophysiology.

[6]  B W Connors,et al.  Inhibitory control of excitable dendrites in neocortex. , 1995, Journal of neurophysiology.

[7]  Idan Segev,et al.  Modeling back propagating action potential in weakly excitable dendrites of neocortical pyramidal cells. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[8]  D. Kleinfeld,et al.  In vivo dendritic calcium dynamics in neocortical pyramidal neurons , 1997, Nature.

[9]  B. Connors,et al.  Apical dendrites of the neocortex: correlation between sodium- and calcium-dependent spiking and pyramidal cell morphology , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  John A. Connor,et al.  Cholinergic input uncouples Ca2+ changes from K+ conductance activation and amplifies intradendritic Ca2+ changes in hippocampal neurons , 1991, Neuron.

[11]  M. Kilgard,et al.  Cortical map reorganization enabled by nucleus basalis activity. , 1998, Science.

[12]  A. Destexhe,et al.  Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons In vivo. , 1998, Journal of neurophysiology.

[13]  B. Sakmann,et al.  Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[14]  Joel L. Davis,et al.  Single neuron computation , 1992 .

[15]  T. Sejnowski,et al.  A model of spike initiation in neocortical pyramidal neurons , 1995, Neuron.

[16]  K. Horikawa,et al.  A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates , 1988, Journal of Neuroscience Methods.

[17]  J. Barker,et al.  The site for initiation of action potential discharge over the somatodendritic axis of rat hippocampal CA1 pyramidal neurons , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[18]  D. Johnston,et al.  Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. , 1995, Science.

[19]  W. N. Ross,et al.  Frequency-dependent propagation of sodium action potentials in dendrites of hippocampal CA1 pyramidal neurons. , 1995, Journal of neurophysiology.

[20]  B. Sakmann,et al.  Active propagation of somatic action potentials into neocortical pyramidal cell dendrites , 1994, Nature.

[21]  K. Svoboda,et al.  Photon Upmanship: Why Multiphoton Imaging Is More than a Gimmick , 1997, Neuron.

[22]  S. Juliano,et al.  The Role of Acetylcholine in Barrel Cortex , 1995 .

[23]  C. L. Cox,et al.  Cellular bases of neocortical activation: modulation of neural oscillations by the nucleus basalis and endogenous acetylcholine , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  F. Gage,et al.  Essential role of neocortical acetylcholine in spatial memory , 1995, Nature.

[25]  D. Tank,et al.  Dendritic Integration in Mammalian Neurons, a Century after Cajal , 1996, Neuron.

[26]  J. Phillis,et al.  The effects of graded forelimb afferent volleys on acetylcholine release from cat sensorimotor cortex. , 1975, The Journal of physiology.

[27]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[28]  D. Johnston,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997 .

[29]  C. H. Vanderwolf,et al.  Activity of identified cortically projecting and other basal forebrain neurones during large slow waves and cortical activation in anaesthetized rats , 1987, Brain Research.

[30]  G. Moruzzi,et al.  Brain stem reticular formation and activation of the EEG. , 1949, Electroencephalography and clinical neurophysiology.

[31]  N. Spruston,et al.  Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. , 1995, Science.

[32]  W. N. Ross,et al.  Muscarinic modulation of spike backpropagation in the apical dendrites of hippocampal CA1 pyramidal neurons. , 1997, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  T. Sloan,et al.  Anesthetic effects on electrophysiologic recordings. , 1998, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[34]  N. Spruston,et al.  Prolonged Sodium Channel Inactivation Contributes to Dendritic Action Potential Attenuation in Hippocampal Pyramidal Neurons , 1997, The Journal of Neuroscience.

[35]  B. Sakmann,et al.  Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. , 1996, Biophysical journal.

[36]  W. N. Ross,et al.  The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons , 1992, Nature.

[37]  W. Denk,et al.  Dendritic spines as basic functional units of neuronal integration , 1995, Nature.

[38]  W. N. Ross,et al.  IPSPs modulate spike backpropagation and associated [Ca2+]i changes in the dendrites of hippocampal CA1 pyramidal neurons. , 1996, Journal of neurophysiology.

[39]  A. Destexhe,et al.  Inhibitory control of somatodendritic interactions underlying action potentials in neocortical pyramidal neurons in vivo: An intracellular and computational study , 1998, Neuroscience.

[40]  E. Jones,et al.  The Barrel Cortex of Rodents , 1995, Cerebral Cortex.

[41]  D. Johnston,et al.  K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons , 1997, Nature.

[42]  D. Contreras,et al.  Synchronization of low-frequency rhythms in corticothalamic networks , 1996, Neuroscience.

[43]  A. Jiménez,et al.  Expression of a transposable antibiotic resistance element in Saccharomyces , 1980, Nature.

[44]  C. Wilson,et al.  Spontaneous firing patterns and axonal projections of single corticostriatal neurons in the rat medial agranular cortex. , 1994, Journal of neurophysiology.

[45]  D. McCormick Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity , 1992, Progress in Neurobiology.

[46]  J. Hablitz,et al.  Local anesthetics block transient outward potassium currents in rat neocortical neurons. , 1993, Journal of neurophysiology.

[47]  Barry W. Connors,et al.  Functions of very distal dendrites: experimental and computational studies of layer 1 synapses on neocortical pyramidal cells , 1992 .

[48]  G. Buzsáki,et al.  Dendritic Spikes Are Enhanced by Cooperative Network Activity in the Intact Hippocampus , 1998, The Journal of Neuroscience.

[49]  G. Buzsáki,et al.  Nucleus basalis and thalamic control of neocortical activity in the freely moving rat , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  J. Bakin,et al.  Induction of a physiological memory in the cerebral cortex by stimulation of the nucleus basalis. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[51]  R. Anwyl,et al.  Stimulation on the Positive Phase of Hippocampal Theta Rhythm Induces Long-Term Potentiation That Can Be Depotentiated by Stimulation on the Negative Phase in Area CA1 In Vivo , 1997, The Journal of Neuroscience.

[52]  D. Johnston,et al.  A Synaptically Controlled, Associative Signal for Hebbian Plasticity in Hippocampal Neurons , 1997, Science.