Quality and efficiency for kernel density estimates in large data
暂无分享,去创建一个
Feifei Li | Yan Zheng | Jeffrey Jestes | Jeff M. Phillips | J. M. Phillips | Feifei Li | Jeffrey Jestes | Yan Zheng
[1] Nimrod Megiddo,et al. Range queries in OLAP data cubes , 1997, SIGMOD '97.
[2] Andrew W. Appel,et al. An Efficient Program for Many-Body Simulation , 1983 .
[3] D. W. Scott,et al. Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .
[4] Angel R. Martinez,et al. Computational Statistics Handbook with MATLAB, Second Edition (Chapman & Hall/Crc Computer Science & Data Analysis) , 2007 .
[5] Leslie Greengard,et al. The Fast Gauss Transform , 1991, SIAM J. Sci. Comput..
[6] Hamid Pirahesh,et al. Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals , 1996, Data Mining and Knowledge Discovery.
[7] Jirí Matousek,et al. Approximations and optimal geometric divide-and-conquer , 1991, STOC '91.
[8] Qin Zhang,et al. Optimal sampling from distributed streams , 2010, PODS '10.
[9] Divesh Srivastava,et al. Optimal histograms for hierarchical range queries (extended abstract) , 2000, PODS '00.
[10] Lu Wang,et al. Sampling based algorithms for quantile computation in sensor networks , 2011, SIGMOD '11.
[11] M. C. Jones,et al. A Brief Survey of Bandwidth Selection for Density Estimation , 1996 .
[12] Csaba D. Tóth,et al. Range Counting over Multidimensional Data Streams , 2004, SCG '04.
[13] John Langford,et al. Hash Kernels for Structured Data , 2009, J. Mach. Learn. Res..
[14] E. Parzen. On Estimation of a Probability Density Function and Mode , 1962 .
[15] Jeffrey Scott Vitter,et al. Data cube approximation and histograms via wavelets , 1998, CIKM '98.
[16] Pankaj K. Agarwal,et al. CRB-Tree: An Efficient Indexing Scheme for Range-Aggregate Queries , 2003, ICDT.
[17] Jeff M. Phillips,et al. Є-Samples for Kernels , 2013, SODA.
[18] H. Kile,et al. Bandwidth Selection in Kernel Density Estimation , 2010 .
[19] Suresh Venkatasubramanian,et al. Comparing distributions and shapes using the kernel distance , 2010, SoCG '11.
[20] Sariel Har-Peled. Geometric Approximation Algorithms , 2011 .
[21] Tian Zhang,et al. Fast density estimation using CF-kernel for very large databases , 1999, KDD '99.
[22] Nello Cristianini,et al. Kernel Methods for Pattern Analysis , 2004 .
[23] Torsten Suel,et al. Optimal Histograms with Quality Guarantees , 1998, VLDB.
[24] C. D. Kemp,et al. Density Estimation for Statistics and Data Analysis , 1987 .
[25] Kilian Q. Weinberger,et al. Feature hashing for large scale multitask learning , 2009, ICML '09.
[26] N. Aronszajn. Theory of Reproducing Kernels. , 1950 .
[27] Divesh Srivastava,et al. Space- and time-efficient deterministic algorithms for biased quantiles over data streams , 2006, PODS '06.
[28] Bernhard Schölkopf,et al. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.
[29] Sanjeev Khanna,et al. Space-efficient online computation of quantile summaries , 2001, SIGMOD '01.
[30] Peter J. Haas,et al. Improved histograms for selectivity estimation of range predicates , 1996, SIGMOD '96.
[31] Ran Duan,et al. Scaling algorithms for approximate and exact maximum weight matching , 2011, ArXiv.
[32] Vladimir Kolmogorov,et al. Blossom V: a new implementation of a minimum cost perfect matching algorithm , 2009, Math. Program. Comput..
[33] M. Rosenblatt. Remarks on Some Nonparametric Estimates of a Density Function , 1956 .
[34] Sudipto Guha,et al. Approximation and streaming algorithms for histogram construction problems , 2006, TODS.
[35] Larry S. Davis,et al. Efficient Kernel Machines Using the Improved Fast Gauss Transform , 2004, NIPS.
[36] Kasturi R. Varadarajan. A divide-and-conquer algorithm for min-cost perfect matching in the plane , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).
[37] Alexander J. Smola,et al. Super-Samples from Kernel Herding , 2010, UAI.
[38] David Eppstein,et al. Deterministic sampling and range counting in geometric data streams , 2003, TALG.
[39] Bruce G. Lindsay,et al. Approximate medians and other quantiles in one pass and with limited memory , 1998, SIGMOD '98.
[40] Larry S. Davis,et al. Improved fast gauss transform and efficient kernel density estimation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.
[41] S. Rao Kosaraju,et al. Algorithms for dynamic closest pair and n-body potential fields , 1995, SODA '95.
[42] Hongjun Lu,et al. Approximate processing of massive continuous quantile queries over high-speed data streams , 2006, IEEE Transactions on Knowledge and Data Engineering.
[43] J. Edmonds. Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.
[44] Bernard Chazelle,et al. The discrepancy method - randomness and complexity , 2000 .
[45] Dimitrios Gunopulos,et al. Approximating multi-dimensional aggregate range queries over real attributes , 2000, SIGMOD '00.
[46] Bernard Chazelle,et al. The Discrepancy Method , 1998, ISAAC.
[47] Ramani Duraiswami,et al. Fast optimal bandwidth selection for kernel density estimation , 2006, SDM.
[48] V. Raykar,et al. Fast Computation of Kernel Estimators , 2010 .
[49] Jeffrey Scott Vitter,et al. Random sampling with a reservoir , 1985, TOMS.
[50] Jeffrey D. Ullman,et al. Implementing data cubes efficiently , 1996, SIGMOD '96.
[51] Bernard Chazelle,et al. On linear-time deterministic algorithms for optimization problems in fixed dimension , 1996, SODA '93.
[52] Anthony Widjaja,et al. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.