Unions of Onions: Preprocessing Imprecise Points for Fast Onion Decomposition

Let  D  be a set of  n  pairwise disjoint unit disks in the plane. We describe how to build a data structure for  D  so that for any point set  P  containing exactly one point from each disk, we can quickly find the onion decomposition (convex layers) of  P . Our data structure can be built in  O ( n  log  n ) time and has linear size. Given  P , we can find its onion decomposition in  O ( n log  k ) time, where  k  is the number of layers. We also provide a matching lower bound. Our solution is based on a recursive space decomposition, combined with a fast algorithm to compute the union of two disjoint onion decompositions.

[1]  Michael Hoffmann,et al.  Halving Balls in Deterministic Linear Time , 2014, ESA.

[2]  Bernard Chazelle,et al.  On the convex layers of a planar set , 1985, IEEE Trans. Inf. Theory.

[3]  Olivier Devillers Delaunay Triangulation of Imprecise Points, Preprocess and Actually Get a Fast Query Time , 2011, J. Comput. Geom..

[4]  Maarten Löffler,et al.  Delaunay triangulation of imprecise points in linear time after preprocessing , 2010, Comput. Geom..

[5]  Giorgio Gambosi,et al.  A convex hull algorithm for points with approximately known positions , 1994, Int. J. Comput. Geom. Appl..

[6]  W. Eddy Convex Hull Peeling , 1982 .

[7]  Maarten Löffler,et al.  Preprocessing Imprecise Points for Delaunay Triangulation: Simplified and Extended , 2010, Algorithmica.

[8]  Joseph S. B. Mitchell,et al.  Triangulating input-constrained planar point sets , 2008, Inf. Process. Lett..

[9]  Kenneth L. Clarkson,et al.  Self-improving algorithms , 2006, SODA '06.

[10]  Thomas Erlebach,et al.  Computing Minimum Spanning Trees with Uncertainty , 2008, STACS.

[11]  David G. Kirkpatrick,et al.  Input-Thrifty Extrema Testing , 2011, ISAAC.

[12]  Rajeev Raman,et al.  Efficient Update Strategies for Geometric Computing with Uncertainty , 2003, Theory of Computing Systems.

[13]  Jan van Leeuwen,et al.  Maintenance of Configurations in the Plane , 1981, J. Comput. Syst. Sci..

[14]  Esther Ezra,et al.  Convex Hull of Points Lying on Lines in o(n log n) Time after Preprocessing I , 2012 .

[15]  Frank Nielsen,et al.  Output-Sensitive Peeling of Convex and Maximal Layers , 1996, Inf. Process. Lett..

[16]  Jirí Matousek,et al.  Efficient partition trees , 1992, Discret. Comput. Geom..

[17]  K. N. Dollman,et al.  - 1 , 1743 .

[18]  Bernard Chazelle,et al.  The power of geometric duality , 1985, BIT Comput. Sci. Sect..

[19]  Noga Alon,et al.  Cutting disjoint disks by straight lines , 1989, Discret. Comput. Geom..

[20]  Timothy M. Chan A dynamic data structure for 3-D convex hulls and 2-D nearest neighbor queries , 2010, J. ACM.

[21]  David G. Kirkpatrick,et al.  Computing Common Tangents Without a Separating Line , 1995, WADS.

[22]  Joseph S. B. Mitchell,et al.  Preprocessing Imprecise Points and Splitting Triangulations , 2010, SIAM J. Comput..

[23]  Rajeev Motwani,et al.  Randomized Algorithms , 1995, SIGA.

[24]  Jan Flusser,et al.  Convex Layers: A New Tool for Recognition of Projectively Deformed Point Sets , 1999, CAIP.

[25]  Wolfgang Mulzer,et al.  Convex hull of points lying on lines in time after preprocessing , 2013, Comput. Geom..