Kinetic accessibility of buried DNA sites in nucleosomes.

Using a theoretical model for spontaneous partial DNA unwrapping from histones, we study the transient exposure of protein-binding DNA sites within nucleosomes. We focus on the functional dependence of the rates for site exposure and reburial on the site position, which is measurable experimentally and pertinent to gene regulation. We find the dependence to be roughly described by a random walker model. Close inspection reveals a surprising physical effect of flexibility-assisted barrier crossing, which we characterize within a toy model, the "semiflexible Brownian rotor."

[1]  P. Talkner Finite barrier corrections for the Kramers rate problem in the spatial diffusion regime , 1994 .

[2]  C. Bustamante,et al.  Rapid spontaneous accessibility of nucleosomal DNA , 2005, Nature Structural &Molecular Biology.

[3]  Jordanka Zlatanova,et al.  Fast, long-range, reversible conformational fluctuations in nucleosomes revealed by single-pair fluorescence resonance energy transfer. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Barrier crossing of semiflexible polymers , 2004, cond-mat/0511141.

[5]  Karolin Luger,et al.  Nucleosome and chromatin fiber dynamics. , 2005, Current opinion in structural biology.

[6]  H. Schiessel,et al.  DNA spools under tension. , 2003, Physical review letters.

[7]  R. Netz,et al.  Salt-induced DNA-histone complexation. , 2000, Physical review letters.

[8]  Pengye Wang,et al.  Brownian dynamics simulation of nucleosome formation and disruption under stretching. , 2003, Journal of theoretical biology.

[9]  Erwin Frey,et al.  Tracer studies on f-actin fluctuations. , 2002, Physical review letters.

[10]  G. S. Manning,et al.  A theory of DNA dissociation from the nucleosome. , 1995, Journal of molecular biology.

[11]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[12]  Michelle D. Wang,et al.  Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[13]  T Schlick,et al.  Computational modeling predicts the structure and dynamics of chromatin fiber. , 2001, Structure.

[14]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[15]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[16]  H. Schiessel,et al.  Chromatin dynamics: nucleosomes go mobile through twist defects. , 2003, Physical review letters.

[17]  J. Langer THEORY OF NUCLEATION RATES. , 1968 .

[18]  Irene K. Moore,et al.  A genomic code for nucleosome positioning , 2006, Nature.

[19]  D. Frenkel,et al.  Simulating rare events in equilibrium or nonequilibrium stochastic systems. , 2005, The Journal of chemical physics.

[20]  T. Richmond,et al.  Crystal structure of the nucleosome core particle at 2.8 Å resolution , 1997, Nature.

[21]  G. Fredrickson The theory of polymer dynamics , 1996 .

[22]  J. Widom,et al.  Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation. , 1995, Journal of molecular biology.

[23]  C. Wiggins,et al.  Trapping and wiggling: elastohydrodynamics of driven microfilaments. , 1997, Biophysical journal.