Pangenome-based genome inference allows efficient and accurate genotyping across a wide spectrum of variant classes

[1]  Joshua F. McMichael,et al.  The Human Pangenome Project: a global resource to map genomic diversity , 2022, Nature.

[2]  Mark T. W. Ebbert,et al.  Curated variation benchmarks for challenging medically-relevant autosomal genes , 2021, Nature Biotechnology.

[3]  Ira M. Hall,et al.  High-coverage whole-genome sequencing of the expanded 1000 Genomes Project cohort including 602 trios , 2021, Cell.

[4]  Jordan M. Eizenga,et al.  Pangenomics enables genotyping of known structural variants in 5202 diverse genomes , 2021, Science.

[5]  Analysis Code , 2021, Fusion Reactor Design.

[6]  Ryan L. Collins,et al.  Expectations and blind spots for structural variation detection from long-read assemblies and short-read genome sequencing technologies. , 2021, American journal of human genetics.

[7]  William T. Harvey,et al.  Haplotype-resolved diverse human genomes and integrated analysis of structural variation , 2021, Science.

[8]  Heng Li,et al.  Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm , 2021, Nature Methods.

[9]  Tobias Marschall,et al.  Chromosome-scale, haplotype-resolved assembly of human genomes , 2020, Nature biotechnology.

[10]  William T. Harvey,et al.  Fully phased human genome assembly without parental data using single-cell strand sequencing and long reads , 2020, Nature Biotechnology.

[11]  Peter A. Audano,et al.  Pangenome-based genome inference , 2020, bioRxiv.

[12]  William T. Harvey,et al.  The structure, function and evolution of a complete human chromosome 8 , 2020, Nature.

[13]  Tariq Ahmad,et al.  A structural variation reference for medical and population genetics , 2020, Nature.

[14]  William T. Harvey,et al.  A fully phased accurate assembly of an individual human genome , 2019, bioRxiv.

[15]  Hannes P. Eggertsson,et al.  GraphTyper2 enables population-scale genotyping of structural variation using pangenome graphs , 2019, Nature Communications.

[16]  Steven L Salzberg,et al.  Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype , 2019, Nature Biotechnology.

[17]  Asif Khalak,et al.  Human Genome Assembly in 100 Minutes , 2019, bioRxiv.

[18]  Glenn Hickey,et al.  Genotyping structural variants in pangenome graphs using the vg toolkit , 2019, Genome Biology.

[19]  Michael C. Schatz,et al.  Paragraph: a graph-based structural variant genotyper for short-read sequence data , 2019, Genome Biology.

[20]  Sergey Koren,et al.  HLA*LA—HLA typing from linearly projected graph alignments , 2019, Bioinform..

[21]  Chunlin Xiao,et al.  An open resource for accurately benchmarking small variant and reference calls , 2019, Nature Biotechnology.

[22]  Helen E. Parkinson,et al.  The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019 , 2018, Nucleic Acids Res..

[23]  Chen Sun,et al.  Toward fast and accurate SNP genotyping from whole genome sequencing data for bedside diagnostics , 2019, Bioinform..

[24]  P. Pontarotti,et al.  Immune diversity sheds light on missing variation in worldwide genetic diversity panels , 2018, PloS one.

[25]  Sergey Koren,et al.  De novo assembly of haplotype-resolved genomes with trio binning , 2018, Nature Biotechnology.

[26]  Brian L Browning,et al.  A One-Penny Imputed Genome from Next-Generation Reference Panels. , 2018, American journal of human genetics.

[27]  Benjamin Neale,et al.  A synthetic-diploid benchmark for accurate variant calling evaluation , 2018, Nature Methods.

[28]  Jan O. Korbel,et al.  Strand-seq enables reliable separation of long reads by chromosome via expectation maximization , 2018, Bioinform..

[29]  Anders Krogh,et al.  Accurate genotyping across variant classes and lengths using variant graphs , 2018, Nature Genetics.

[30]  David Haussler,et al.  High-resolution comparative analysis of great ape genomes , 2018, Science.

[31]  Wan-Ping Lee,et al.  Fast and accurate genomic analyses using genome graphs , 2019, Nature Genetics.

[32]  Heng Li,et al.  Minimap2: pairwise alignment for nucleotide sequences , 2017, Bioinform..

[33]  Kari Stefansson,et al.  Graphtyper enables population-scale genotyping using pangenome graphs , 2017, Nature Genetics.

[34]  Ryan L. Collins,et al.  Multi-platform discovery of haplotype-resolved structural variation in human genomes , 2017, bioRxiv.

[35]  Gil McVean,et al.  Integrating long-range connectivity information into de Bruijn graphs , 2017, bioRxiv.

[36]  Alexander T. Dilthey,et al.  High-Accuracy HLA Type Inference from Whole-Genome Sequencing Data Using Population Reference Graphs , 2016, PLoS Comput. Biol..

[37]  Alan M. Kwong,et al.  Next-generation genotype imputation service and methods , 2016, Nature Genetics.

[38]  Bonnie Berger,et al.  Fast genotyping of known SNPs through approximate k-mer matching , 2016, bioRxiv.

[39]  Zamin Iqbal,et al.  Using reference-free compressed data structures to analyze sequencing reads from thousands of human genomes , 2016, bioRxiv.

[40]  Brian L Browning,et al.  Genotype Imputation with Millions of Reference Samples. , 2016, American journal of human genetics.

[41]  Yan Guo,et al.  Population structure analysis on 2504 individuals across 26 ancestries using bioinformatics approaches , 2015, BMC Bioinformatics.

[42]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[43]  Gabor T. Marth,et al.  An integrated map of structural variation in 2,504 human genomes , 2015, Nature.

[44]  Alexa B. R. McIntyre,et al.  Extensive sequencing of seven human genomes to characterize benchmark reference materials , 2015, Scientific Data.

[45]  Shyr Yu,et al.  Genome measures used for quality control are dependent on gene function and ancestry , 2015, Bioinform..

[46]  Ryan M. Layer,et al.  SpeedSeq: Ultra-fast personal genome analysis and interpretation , 2014, Nature Methods.

[47]  Gil McVean,et al.  Improved genome inference in the MHC using a population reference graph , 2014, Nature Genetics.

[48]  Yan Guo,et al.  Three-stage quality control strategies for DNA re-sequencing data , 2014, Briefings Bioinform..

[49]  G. McVean,et al.  Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications , 2014, Nature Genetics.

[50]  M. Feolo,et al.  HLA Diversity in the 1000 Genomes Dataset , 2014, PloS one.

[51]  Jan O. Korbel,et al.  Phenotypic impact of genomic structural variation: insights from and for human disease , 2013, Nature Reviews Genetics.

[52]  Jonathan Marchini,et al.  Genotype calling and phasing using next-generation sequencing reads and a haplotype scaffold , 2013, Bioinform..

[53]  Thomas Zichner,et al.  DELLY: structural variant discovery by integrated paired-end and split-read analysis , 2012, Bioinform..

[54]  Gabor T. Marth,et al.  Haplotype-based variant detection from short-read sequencing , 2012, 1207.3907.

[55]  O. Delaneau,et al.  A linear complexity phasing method for thousands of genomes , 2011, Nature Methods.

[56]  G. McVean,et al.  De novo assembly and genotyping of variants using colored de Bruijn graphs , 2011, Nature Genetics.

[57]  J. Sebat,et al.  High Frequencies of De Novo CNVs in Bipolar Disorder and Schizophrenia , 2011, Neuron.

[58]  J. Marchini,et al.  Genotype Imputation with Thousands of Genomes , 2011, G3: Genes | Genomes | Genetics.

[59]  Kathryn Roeder,et al.  Multiple Recurrent De Novo CNVs, Including Duplications of the 7q11.23 Williams Syndrome Region, Are Strongly Associated with Autism , 2011, Neuron.

[60]  Gonçalo R. Abecasis,et al.  The variant call format and VCFtools , 2011, Bioinform..

[61]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[62]  Carl Kingsford,et al.  A fast, lock-free approach for efficient parallel counting of occurrences of k-mers , 2011, Bioinform..

[63]  M. Reid,et al.  DNA-based methods in the immunohematology reference laboratory. , 2011, Transfusion and apheresis science : official journal of the World Apheresis Association : official journal of the European Society for Haemapheresis.

[64]  H. Stefánsson,et al.  Supplementary webappendix , 2018 .

[65]  James Robinson,et al.  IPD—the Immuno Polymorphism Database , 2004, Nucleic acids research.

[66]  Jake K. Byrnes,et al.  Genome-wide association study of copy number variation in 16,000 cases of eight common diseases and 3,000 shared controls , 2010, Nature.

[67]  P. Donnelly,et al.  A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies , 2009, PLoS genetics.

[68]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[69]  M. Drumm,et al.  Histo-Blood Group Gene Polymorphisms as Potential Genetic Modifiers of Infection and Cystic Fibrosis Lung Disease Severity , 2009, PloS one.

[70]  Mark I. McCarthy,et al.  A Genome-Wide Association Study Identifies Protein Quantitative Trait Loci (pQTLs) , 2008, PLoS genetics.

[71]  A. Singleton,et al.  Rare Structural Variants Disrupt Multiple Genes in Neurodevelopmental Pathways in Schizophrenia , 2008, Science.

[72]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[73]  Kenny Q. Ye,et al.  Strong Association of De Novo Copy Number Mutations with Autism , 2007, Science.

[74]  Paul T. Groth,et al.  The ENCODE (ENCyclopedia Of DNA Elements) Project , 2004, Science.

[75]  Terrence S. Furey,et al.  The UCSC Table Browser data retrieval tool , 2004, Nucleic Acids Res..

[76]  M. Stephens,et al.  Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data. , 2003, Genetics.

[77]  Elizabeth M. Smigielski,et al.  dbSNP: the NCBI database of genetic variation , 2001, Nucleic Acids Res..

[78]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .