On the properties of language classes defined by bounded reaction automata

Reaction automata are a formal model that has been introduced to investigate the computing powers of interactive behaviors of biochemical reactions (Okubo et al. (2012) [19]). Reaction automata are language acceptors with multiset rewriting mechanism whose basic frameworks are based on reaction systems introduced in Ehrenfeucht and Rozenberg (2007) [8]. In this paper we continue the investigation of reaction automata with a focus on the formal language theoretic properties of subclasses of reaction automata, called linear-bounded reaction automata (LRAs) and exponentially-bounded reaction automata (ERAs). Besides LRAs, we newly introduce an extended model (denoted by @l-LRAs) by allowing @l-moves in the accepting process of reaction, and investigate the closure properties of language classes accepted by both LRAs and @l-LRAs. Further, we establish new relationships of language classes accepted by LRAs and by ERAs with the Chomsky hierarchy. The main results include the following: (i)the class of languages accepted by @l-LRAs forms an AFL with additional closure properties, (ii)any recursively enumerable language can be expressed as a homomorphic image of a language accepted by an LRA, (iii)the class of languages accepted by ERAs coincides with the class of context-sensitive languages.

[1]  J. van Leeuwen,et al.  Multiset Processing , 2001, Lecture Notes in Computer Science.

[2]  Seymour Ginsburg,et al.  Algebraic and Automata Theoretic Properties of Formal Languages , 1975 .

[3]  Hiroshi Tanaka,et al.  Artificial Life Applications of a Class of P Systems: Abstract Rewriting Systems on Multisets , 2000, WMP.

[4]  Victor Mitrana,et al.  Multiset Automata , 2000, WMP.

[5]  Erzsébet Csuhaj-Varjú P Automata , 2004, Workshop on Membrane Computing.

[6]  Faron Moller,et al.  Pushdown automata, multiset automata, and Petri nets , 2001, Theor. Comput. Sci..

[7]  Manfred Kudlek,et al.  Toward a Formal Macroset Theory , 2000, WMP.

[8]  Arto Salomaa,et al.  Formal languages , 1973, Computer science classics.

[9]  Oscar H. Ibarra,et al.  Characterizations of context-sensitive languages and other language classes in terms of symport/antiport P systems , 2006, Theor. Comput. Sci..

[10]  Andrzej Ehrenfeucht,et al.  Events and modules in reaction systems , 2007, Theor. Comput. Sci..

[11]  Satoshi Kobayashi,et al.  Reaction automata , 2012, Theor. Comput. Sci..

[12]  Gheorghe Paun,et al.  P and dP Automata: A Survey , 2011, Rainbow of Computer Science.

[13]  M. W. Shields An Introduction to Automata Theory , 1988 .

[14]  Oscar H. Ibarra,et al.  On the Computational Complexity of P Automata , 2005, Natural Computing.

[15]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[16]  Andrzej Ehrenfeucht,et al.  Reaction Systems , 2007, Fundam. Informaticae.

[17]  Erzsébet Csuhaj-Varjú,et al.  P Automata or Purely Communicating Accepting P Systems , 2002, WMC-CdeA.

[18]  Andrzej Ehrenfeucht,et al.  Introducing time in reaction systems , 2009, Theor. Comput. Sci..

[19]  Manfred Kudlek,et al.  Properties of Multiset Language Classes Defined by Multiset Pushdown Automata , 2009, Fundam. Informaticae.

[20]  Gheorghe Paun,et al.  DNA Computing: New Computing Paradigms , 1998 .

[21]  Andrzej Ehrenfeucht,et al.  Combinatorics of Life and Death for Reaction Systems , 2010, Int. J. Found. Comput. Sci..

[22]  Artiom Alhazov,et al.  Minimization strategies for maximally parallel multiset rewriting systems , 2011, Theor. Comput. Sci..

[23]  Andrzej Ehrenfeucht,et al.  Functions Defined by Reaction Systems , 2011, Int. J. Found. Comput. Sci..