Application of Decision Rules, Generated on the Basis of Local Knowledge Bases, in the Process of Global Decision-Making

The paper includes issues related to process of global decision-making on the basis of knowledge which is stored in several local knowledge bases. The local knowledge bases, that are used, contain information on the same subject, but are defined on different sets of conditional attributes that are not necessarily disjoint. The paper contains a description of a multi-agent decision-making system with a hierarchical structure. In the paper a method of elimination inconsistencies in the knowledge operating on the basis of decision rules generated based on local knowledge bases was proposed.

[1]  Philip D. Straffin,et al.  Game theory and strategy , 1993 .

[2]  Andrzej Skowron,et al.  Boolean Reasoning for Decision Rules Generation , 1993, ISMIS.

[3]  Zbigniew W. Ras,et al.  Multiple Classifiers for Different Features in Timbre Estimation , 2010, Advances in Intelligent Information Systems.

[4]  Alicja Wakulicz-Deja,et al.  Application of the Method of Editing and Condensing in the Process of Global Decision-making , 2011, Fundam. Informaticae.

[5]  Andrzej Skowron,et al.  Multimodal Classification: Case Studies , 2006, Trans. Rough Sets.

[6]  M. Przybyła-Kasperek,et al.  Podejmowanie decyzji globalnej z zastosowaniem hierarchicznego systemu wieloagentowego oraz algorytmu mrówkowego , 2009 .

[7]  Zdzislaw Pawlak,et al.  On Conflicts , 1984, Int. J. Man Mach. Stud..

[8]  Zdzislaw Pawlak,et al.  An Inquiry into Anatomy of Conflicts , 1998, Inf. Sci..

[9]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[10]  J. Pieter M. Schalkwijk Review of 'Notes on Digital Communication' (Turin, G. L.; 1969) , 1970, IEEE Trans. Inf. Theory.

[11]  A. Wakulicz-Deja,et al.  Hierarchiczny system wieloagentowy , 2007 .

[12]  Alicja Wakulicz-Deja,et al.  Hierarchical multi-agent system , 2007 .

[13]  Peter E. Hart,et al.  The condensed nearest neighbor rule (Corresp.) , 1968, IEEE Trans. Inf. Theory.

[14]  Z. Pawlak Rough Sets: Theoretical Aspects of Reasoning about Data , 1991 .

[15]  Alicja Wakulicz-Deja,et al.  Multi-Agent Decision Taking System , 2010, Fundam. Informaticae.

[16]  Ludmila I. Kuncheva,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2004 .

[17]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[18]  Nitesh V. Chawla,et al.  Creating ensembles of classifiers , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[19]  Subhash C. Bagui,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2005, Technometrics.

[20]  Alicja Wakulicz-Deja,et al.  Wieloagentowy system decyzyjny – porównanie metod , 2010 .

[21]  Andrzej Skowron,et al.  On some conflict models and conflict resolution , 2002 .

[22]  James F. Peters,et al.  Rough Set Approach to Pattern Extraction from Classifiers , 2003, RSKD.

[23]  Vasant Honavar,et al.  Learning classifiers from distributed, semantically heterogeneous, autonomous data sources , 2004 .

[24]  Dominik Ślęzak,et al.  Neural Network Architecture for Synthesis of the Probabilistic Rule Based Classifiers , 2003, RSKD.

[25]  Vicenç Torra,et al.  Modeling decisions - information fusion and aggregation operators , 2007 .