Primate supplementary eye field: I. Comparative aspects of mesencephalic and pontine connections

WGA‐HRP was used to examine projections to the brainstem from the supplementary eye field (SEF). The SEF was defined electrophysiologically in awake, behaving monkeys and connections were compared to those of the arcuate frontal eye field (FEF), area 6DC, and primary motor cortex. The SEF was found to have either direct or indirect connections with almost every known pre‐ and paraoculomotor structure of the brainstem. The SEF was found to project bilaterally to layers I and IV of a tangentially widespread region of the superior colliculus. Terminal label was evident in the pretectal olivary nucleus, nucleus of the optic tract, nucleus raphe interpositus (omnipause region), nucleus prepositus hypoglossi, the perioculomotor cap of the central gray, dorsal central gray, nucleus reticularis tegmenti pontis, nucleus reticularis pontis oralis, and to multiple nuclei of the basis pontis (most densely to the dorsomedial nucleus). Bilateral projections were found in the parvicellular red nucleus. Reciprocal connections were present in the nucleus limitans, the mesencephalic reticular formation, locus coeruleus, and the serotonergic nuclei of the raphe complex (dorsalis and central superior). Overall patterns of connectivity were similar to those of the FEF and markedly different from those of the contiguous dorsocaudal area 6 or primary motor cortex. It was concluded that observed patterns of SEF‐brainstem connectivity further justifies viewing this region as a distinct eye field that is likely to serve preparatory and trigger functions in the generation of saccadic eye movements.

[1]  M. B. Bender,et al.  Lesions of the pontine tegmentum and conjugate gaze paralysis. , 1971, Archives of neurology.

[2]  R. McCrea,et al.  Anatomical connections of the prepositus and abducens nuclei in the squirrel monkey , 1988, The Journal of comparative neurology.

[3]  J. Schlag,et al.  Unit activity related to spontaneous saccades in frontal dorsomedial cortex of monkey , 2004, Experimental Brain Research.

[4]  S. Faugier-Grimaud,et al.  Anatomic connections of inferior parietal cortex (area 7) with subcortical structures related to vestibulo‐ocular function in a monkey (macaca fascicularis) , 1989, The Journal of comparative neurology.

[5]  D. Pandya,et al.  Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey , 1987, The Journal of comparative neurology.

[6]  R. Herndon,et al.  Ultrastructural evidence for phagocytosis by oligodendroglia , 1985, Neuroscience Letters.

[7]  M. Mesulam,et al.  Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. , 1978, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[8]  W. Fries,et al.  Contralateral cortical projections to the superior colliculus in the macaque monkey , 2004, Experimental Brain Research.

[9]  J. Olszewski,et al.  Cytoarchitecture of the Human Brain Stem , 1955 .

[10]  Blank Rh,et al.  The pretectal nuclear complex and the accessory optic system. , 1988 .

[11]  E. Keller,et al.  Colliculoreticular organization in primate oculomotor system. , 1977, Journal of neurophysiology.

[12]  C. Bruce,et al.  Frontal eye field efferents in the macaque monkey: II. Topography of terminal fields in midbrain and pons , 1988, The Journal of comparative neurology.

[13]  D. A. Suzuki,et al.  Smooth-pursuit eye movement deficits with chemical lesions in the dorsolateral pontine nucleus of the monkey. , 1988, Journal of neurophysiology.

[14]  L A Krubitzer,et al.  Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys II. cortical connections , 1986, The Journal of comparative neurology.

[15]  Per Brodal,et al.  Principles of organization of the monkey corticopontine projection , 1978, Brain Research.

[16]  G. Leichnetz The medial accessory nucleus of bechterew: A cell group within the anatomical limits of the rostral oculomotor complex receives a direct prefrontal projection in the monkey , 1982, The Journal of comparative neurology.

[17]  M. Schlag-Rey,et al.  Direct projection from the supplementary eye field to the nucleus raphe interpositus , 2004, Experimental Brain Research.

[18]  R. Baker,et al.  Anatomical connections of the nucleus prepositus of the cat , 1985, The Journal of comparative neurology.

[19]  J. T. Weber Pretectal complex and accessory optic system of primates. , 1985, Brain, Behavior and Evolution.

[20]  Robert H. Wurtz,et al.  Projection of area 8 (frontal eye field) to superior colliculus in the monkey. An autoradiographic study , 1976, Brain Research.

[21]  C. Bruce,et al.  Primate frontal eye fields. I. Single neurons discharging before saccades. , 1985, Journal of neurophysiology.

[22]  M. Wiesendanger,et al.  An anatomical investigation of the corticopontine projection in the primate (Macaca fascicularis and Saimiri sciureus)—II. The projection from frontal and parietal association areas , 1979, Neuroscience.

[23]  A. Björklund,et al.  Regional distribution of catecholamines in monkey cerebral cortex, evidence for a dopaminergic innervation of the primate prefrontal cortex , 1978, Neuroscience Letters.

[24]  K. Akert,et al.  A stereotaxic atlas of the brain of the squirrel monkey : (Saimiri sciureus) , 1963 .

[25]  H. Noda,et al.  Afferent and efferent connections of the oculomotor cerebellar vermis in the macaque monkey , 1987, The Journal of comparative neurology.

[26]  G. Bonin,et al.  The neocortex of Macaca mulatta , 1947 .

[27]  A. Gibson,et al.  Corticopontine visual projections in macaque monkeys , 1980, The Journal of comparative neurology.

[28]  H. Künzle An autoradiographic analysis of the efferent connections from premotor and adjacent prefrontal regions (areas 6 and 9) in macaca fascicularis. , 1978, Brain, behavior and evolution.

[29]  B. Richmond,et al.  Implantation of magnetic search coils for measurement of eye position: An improved method , 1980, Vision Research.

[30]  D. G. Lawrence,et al.  Cortical projections to the red nucleus and the brain stem in the Rhesus monkey. , 1967, Brain research.

[31]  M. Goldberg,et al.  Functional properties of corticotectal neurons in the monkey's frontal eye field. , 1987, Journal of neurophysiology.

[32]  Corticopontine projections from the visual area of the superior temporal sulcus in the macaque monkey. , 1982, Archives italiennes de biologie.

[33]  A. Berthoz,et al.  Neuronal activity in prepositus nucleus correlated with eye movement in the alert cat. , 1982, Journal of neurophysiology.

[34]  T. Yin,et al.  Subcortical projections of the inferior parietal cortex (area 7) in the stump‐tailed monkey , 1984, The Journal of comparative neurology.

[35]  J. T. Weber,et al.  The pretectal complex of the monkey: A reinvestigation of the morphology and retinal terminations , 1985, The Journal of comparative neurology.

[36]  C. Brinkman,et al.  Supplementary motor area in the monkey: activity of neurons during performance of a learned motor task. , 1979, Journal of neurophysiology.

[37]  H. Noda,et al.  Discharges of Purkinje cells and mossy fibres in the cerebellar vermis of the monkey during saccadic eye movements and fixation , 1980, The Journal of physiology.

[38]  P. Brodal,et al.  The Cerebropontocerebellar Pathway: Salient Features of Its Organization , 1982 .

[39]  U. Jürgens,et al.  The efferent and afferent connections of the supplementary motor area , 1984, Brain Research.

[40]  E. Keller,et al.  Visual and oculomotor signals in nucleus reticularis tegmenti pontis in alert monkey. , 1985, Journal of neurophysiology.

[41]  G. Leichnetz,et al.  Cortical projections to nuclei adjacent to oculomotor complex in the medial dien‐mesencephalic tegmentum in the monkey , 1984, The Journal of comparative neurology.

[42]  Hidehiko Komatsu,et al.  Projections from the functional subdivisions of the frontal eye field to the superior colliculus in the monkey , 1985, Brain Research.

[43]  E. L. Keller,et al.  Vestibular signals in the posterior vermis of the alert monkey cerebellum , 2004, Experimental Brain Research.

[44]  Daniel O'Connor,et al.  Laminar, tangential and regional organization of the noradrenergic innervation of monkey cortex: Dopamine-β-hydroxylase immunohistochemistry , 1982, Brain Research Bulletin.

[45]  G. Rizzolatti,et al.  Patterns of cytochrome oxidase activity in the frontal agranular cortex of the macaque monkey , 1985, Behavioural Brain Research.

[46]  G. Leichnetz,et al.  The prefrontal corticotectal projection in the monkey; An anterograde and retrograde horseradish peroxidase study , 1981, Neuroscience.

[47]  M. Karnovsky,et al.  A "DIRECT-COLORING" THIOCHOLINE METHOD FOR CHOLINESTERASES , 1964, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[48]  D. Pandya,et al.  Anatomical investigation of projections to the basis pontis from posterior parietal association cortices in rhesus monkey , 1989, The Journal of comparative neurology.

[49]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  A. Crane,et al.  Regional distribution of monoamines in the cerebral cortex and subcortical structures of the rhesus monkey: concentrations and in vivo synthesis rates , 1979, Brain Research.

[51]  G. Leichnetz The frontal eye field projects to the nucleus prepositus hypoglossi in the monkey , 1985, Neuroscience Letters.

[52]  E. Keller Participation of medial pontine reticular formation in eye movement generation in monkey. , 1974, Journal of neurophysiology.

[53]  G. B. Stanton,et al.  Cytoarchitectural characteristic of the frontal eye fields in macaque monkeys , 1989, The Journal of comparative neurology.

[54]  P. Brodal,et al.  The cortical projection to the nucleus reticularis tegmenti pontis in the rhesus monkey , 2004, Experimental Brain Research.

[55]  S. Foote,et al.  Noradrenergic and serotoninergic innervation of cortical, thalamic, and tectal visual structures in old and new world monkeys , 1986, The Journal of comparative neurology.

[56]  B. Cohen,et al.  VESTIBULO-OCULAR RELATIONS , 1971 .

[57]  M. Kato,et al.  Saccade-related activity of periaqueductal gray matter of the monkey. , 1986, Investigative ophthalmology & visual science.

[58]  E. Keller,et al.  Neuronal responses to optokinetic stimuli in pontine nuclei of behaving monkey. , 1983, Journal of neurophysiology.

[59]  D. A. Suzuki,et al.  The role of the flocculus of the monkey in saccadic eye movements. , 1979, The Journal of physiology.

[60]  K. Akert,et al.  Efferent connections of cortical, area 8 (frontal eye field) in Macaca fascicularis. A reinvestigation using the autoradiographic technique , 1977, The Journal of comparative neurology.

[61]  L. Chalupa,et al.  An analysis of the transport of WGA-HRP in the cat's visual system , 1984, Journal of Neuroscience Methods.

[62]  E. Keller,et al.  NEURAL ACTIVITY IN THE NUCLEUS RETICULARIS TEGMENTI PONTIS IN THE MONKEY RELATED TO EYE MOVEMENTS AND VISUAL STIMULATION * , 1981, Annals of the New York Academy of Sciences.

[63]  G. Leichnetz Afferent and efferent connections of the dorsolateral precentral gyrus (area 4, hand/arm region) in the macaque monkey, with comparisons to area 8 , 1986, The Journal of comparative neurology.

[64]  J. Kaas,et al.  Supplementary eye field as defined by intracortical microstimulation: Connections in macaques , 1990, The Journal of comparative neurology.

[65]  B. Cohen,et al.  Raphe nucleus of the pons containing omnipause neurons of the oculomotor system in the monkey, and Its homologue in man , 1988, The Journal of comparative neurology.

[66]  G. Leichnetz Connections between the frontal eye field and pretectum in the monkey: An anterograde/retrograde study using HRP GEL and TMB neurohistochemistry , 1982, The Journal of comparative neurology.

[67]  G. Leichnetz,et al.  Cortical projections to the paramedian tegmental and basilar pons in the monkey , 1984, The Journal of comparative neurology.

[68]  D. Humphrey,et al.  Sizes, laminar and topographic origins of cortical projections to the major divisions of the red nucleus in the monkey , 1984, The Journal of comparative neurology.

[69]  M. Wong-Riley Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry , 1979, Brain Research.

[70]  A. Fuchs,et al.  Afferents to the flocculus of the cerebellum in the rhesus macaque as revealed by retrograde transport of horseradish peroxidase , 1985, The Journal of comparative neurology.

[71]  K. Akert,et al.  Projections of precentral and premotor cortex to the red nucleus and other midbrain areas in macaca fascicularis , 1979, Experimental Brain Research.

[72]  Leslie G. Ungerleider,et al.  Subcortical projections of area MT in the macaque , 1984, The Journal of comparative neurology.

[73]  S. Onodera Olivary projections from the mesodiencephalic structures in the cat studied by means of axonal transport of horseradish peroxidase and tritiated amino acids , 1984, The Journal of comparative neurology.

[74]  G. J. Royce,et al.  An autoradiographic study of the rubroolivary tract in the rhesus monkey , 1979, The Journal of comparative neurology.

[75]  E. L. Keller,et al.  Visual signals in the dorsolateral pontine nucleus of the alert monkey: Their relationship to smooth-pursuit eye movements , 2004, Experimental Brain Research.

[76]  A. Fuchs,et al.  Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. I. Purkinje cell activity during visually guided horizontal smooth-pursuit eye movements and passive head rotation. , 1978, Journal of neurophysiology.

[77]  M. Schlag-Rey,et al.  Evidence for a supplementary eye field. , 1987, Journal of neurophysiology.

[78]  V. Henn,et al.  Visual-vestibular interaction in the flocculus of the alert monkey , 1981, Experimental Brain Research.

[79]  D. German,et al.  Locus ceruleus in rhesus monkey (Macaca mulatta): A combined histochemical fluorescence, Nissl and silver study , 1975, The Journal of comparative neurology.

[80]  P. Goldman-Rakic,et al.  Region‐specific distribution of catecholamine afferents in primate cerebral cortex: A fluorescence histochemical analysis , 1984, The Journal of comparative neurology.

[81]  J. Morrison,et al.  Noradrenergic innervation of monkey prefrontal cortex: A dopamine‐β‐hydroxylase immunohistochemical study , 1989, The Journal of comparative neurology.

[82]  P. Brodal,et al.  Further observations on the cerebellar projections from the pontine nuclei and the nucleus reticularis tegmenti pontis in the rhesus monkey , 1982, The Journal of comparative neurology.

[83]  A. Brodal The perihypoglossal nuclei in the macaque monkey and thechimpanzee , 1983, The Journal of comparative neurology.

[84]  G. Leichnetz Inferior frontal eye field projections to the pursuit-related dorsolateral pontine nucleus and middle temporal area (MT) in the monkey , 1989, Visual Neuroscience.

[85]  R. Andersen,et al.  Different patterns of corticopontine projections from separate cortical fields within the inferior parietal lobule and dorsal prelunate gyrus of the macaque , 2004, Experimental Brain Research.

[86]  W. Fries Cortical projections to the superior colliculus in the macaque monkey: A retrograde study using horseradish peroxidase , 1984, The Journal of comparative neurology.

[87]  J. Astruc Corticofugal connections of area 8 (frontal eye field) in Macaca mulatta. , 1971, Brain research.

[88]  D. A. Suzuki,et al.  Target velocity signals of visual tracking in vermal Purkinje cells of the monkey. , 1979, Science.

[89]  J. K. Harting,et al.  Ascending pathways from the monkey superior colliculus: An autoradiographic analysis , 1980, The Journal of comparative neurology.

[90]  R. Baker,et al.  Morphophysiological identification of interneurons in the oculomotor nucleus that project to the abducens nucleus in the cat , 1975, Brain Research.

[91]  M. B. Bender,et al.  Electrooculographic syndrome in monkeys after pontine reticular formation lesions. , 1968, Archives of neurology.

[92]  J. K. Harting Descending pathways from the superior colliculus: An autoradiographic analysis in the rhesus monkey (Macaca mulatta) , 1977, The Journal of comparative neurology.

[93]  S. M. Highstein,et al.  Anatomy and physiology of saccadic burst neurons in the alert squirrel monkey. II. Inhibitory burst neurons , 2022 .

[94]  D. A. Suzuki,et al.  Visual and pursuit eye movement-related activity in posterior vermis of monkey cerebellum. , 1981, Journal of neurophysiology.

[95]  D. Robinson Eye movements evoked by collicular stimulation in the alert monkey. , 1972, Vision research.

[96]  A. Berthoz,et al.  Neuronal activity in the prepositus hypoglossi nucleus correlated with vertical and horizontal eye movement in the cat , 1976, Brain Research.

[97]  M. Glickstein,et al.  Corticopontine projection in the macaque: The distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei , 1985, The Journal of comparative neurology.

[98]  P. Brodal,et al.  The pontocerebellar projection in the rhesus monkey: An experimental study with retrograde axonal transport of horseradish peroxidase , 1979, Neuroscience.

[99]  J. Courville,et al.  The rubro‐olivary projection in the macaque: An experimental study with silver impregnation methods , 1974, The Journal of comparative neurology.

[100]  J. Tanji,et al.  Neuronal activity in cortical motor areas related to ipsilateral, contralateral, and bilateral digit movements of the monkey. , 1988, Journal of neurophysiology.

[101]  K. Hepp,et al.  Frontal eye field projection to the paramedian pontine reticular formation traced with wheat germ agglutinin in the monkey , 1985, Brain Research.

[102]  J. Büttner-Ennever,et al.  An autoradiographic study of the pathways from the pontine reticular formation involved in horizontal eye movements , 1976, Brain Research.

[103]  J. Büttner-Ennever,et al.  Oculomotor nucleus afferents in the monkey demonstrated with horseradish peroxidase , 1979, Brain Research.

[104]  D. A. Suzuki,et al.  The role of the flocculus of the monkey in fixation and smooth pursuit eye movements. , 1979, The Journal of physiology.

[105]  N. Strominger,et al.  Efferent connections of the red nucleus in the brainstem and spinal cord of the rhesus monkey , 1973, The Journal of comparative neurology.