The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2

We quantitatively study the Raman and photoluminescence (PL) emission from single-layer molybdenum disulfide (MoS2) on dielectric (SiO2, hexagonal boron nitride, mica and the polymeric dielectric Gel-Film®) and conducting substrates (Au and few-layer graphene). We find that the substrate can affect the Raman and PL emission in a twofold manner. First, the absorption and emission intensities are strongly modulated by the constructive/destructive interference within the different substrates. Second, the position of the A1g Raman mode peak and the spectral weight between neutral and charged excitons in the PL spectra are modified by the substrate. We attribute this effect to substrate-induced changes in the doping level and in the decay rates of the excitonic transitions. Our results provide a method to quantitatively study the Raman and PL emission from MoS2-based vertical heterostructures and represent the first step in ad hoc tuning the PL emission of 1L MoS2 by selecting the proper substrate.

[1]  A Castellanos-Gomez,et al.  Laser-thinning of MoS₂: on demand generation of a single-layer semiconductor. , 2012, Nano letters.

[2]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[3]  Stéphane Berciaud,et al.  Energy transfer from individual semiconductor nanocrystals to graphene. , 2010, ACS nano.

[4]  Large and tunable photothermoelectric effect in single-layer MoS2. , 2013, Nano letters.

[5]  Andres Castellanos-Gomez,et al.  Elastic Properties of Freely Suspended MoS2 Nanosheets , 2012, Advanced materials.

[6]  J. Grossman,et al.  Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. , 2013, Nano letters.

[7]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.

[8]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[9]  Phaedon Avouris,et al.  Carbon-nanotube photonics and optoelectronics , 2008 .

[10]  Arindam Ghosh,et al.  Nature of electronic states in atomically thin MoS₂ field-effect transistors. , 2011, ACS nano.

[11]  Hua Zhang,et al.  Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. , 2013, ACS nano.

[12]  D. Late,et al.  Rapid Characterization of Ultrathin Layers of Chalcogenides on SiO2/Si Substrates , 2012 .

[13]  K. Kamaras,et al.  Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy , 2008, 0812.0690.

[14]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[15]  N. Agraït,et al.  Atomically thin mica flakes and their application as ultrathin insulating substrates for graphene. , 2011, Small.

[16]  James Hone,et al.  Investigation of Nonlinear Elastic Behavior of Two-Dimensional Molybdenum Disulfide , 2012 .

[17]  Visualizing graphene based sheets by fluorescence quenching microscopy. , 2009, Journal of the American Chemical Society.

[18]  S. Min,et al.  MoS₂ nanosheet phototransistors with thickness-modulated optical energy gap. , 2012, Nano letters.

[19]  Aaron M. Jones,et al.  Electrical control of neutral and charged excitons in a monolayer semiconductor , 2012, Nature Communications.

[20]  Hugen Yan,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[21]  K. Novoselov,et al.  Rayleigh imaging of graphene and graphene layers. , 2007, Nano letters.

[22]  B. Chakraborty,et al.  Symmetry-dependent phonon renormalization in monolayer MoS2transistor , 2012, Physical Review B.

[23]  K. L. Sebastian,et al.  Long range resonance energy transfer from a dye molecule to graphene has (distance)(-4) dependence. , 2009, The Journal of chemical physics.

[24]  Yihong Wu,et al.  Graphene thickness determination using reflection and contrast spectroscopy. , 2007, Nano letters.

[25]  R. Gorbachev Van der Waals heterostructures , 2014, Nature Reviews Methods Primers.

[26]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[27]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[28]  Single‐Layer MoS2 Mechanical Resonators , 2013, Advanced materials.

[29]  Michael S. Fuhrer,et al.  High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects , 2012, 1212.6292.

[30]  Electric-field screening in atomically thin layers of MoS₂: the role of interlayer coupling. , 2012, Advanced materials.

[31]  Aaron M. Jones,et al.  Optical generation of excitonic valley coherence in monolayer WSe2. , 2013, Nature nanotechnology.

[32]  Timothy C. Berkelbach,et al.  Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. , 2013, Nature Materials.

[33]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[34]  M. Schmid Principles Of Optics Electromagnetic Theory Of Propagation Interference And Diffraction Of Light , 2016 .

[35]  Michael S. Fuhrer,et al.  Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides , 2007 .

[36]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[37]  B. Jonker,et al.  Valley polarization and intervalley scattering in monolayer MoS$_{2}$ , 2012 .

[38]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[39]  Vibhor Singh,et al.  Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping , 2013, 1311.4829.

[40]  Yuhei Miyauchi,et al.  Tunable photoluminescence of monolayer MoS₂ via chemical doping. , 2013, Nano letters.

[41]  Hua Zhang,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[42]  Dameng Liu,et al.  Solvatochromic effect on the photoluminescence of MoS₂ monolayers. , 2013, Small.

[43]  B. Park,et al.  Interference effect on Raman spectrum of graphene on SiO 2 / Si , 2009, 0908.4322.

[44]  Phaedon Avouris,et al.  Carbon nanotube optoelectronics , 2006 .

[45]  Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates. , 2012, ACS nano.

[46]  F. Koppens,et al.  Universal distance-scaling of nonradiative energy transfer to graphene. , 2013, Nano letters.

[47]  M. I. Bell,et al.  Vibrational analysis of the dioctahedral mica: 2M1 muscovite , 1999 .

[48]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[49]  J. Lefebvre,et al.  Bright band gap photoluminescence from unprocessed single-walled carbon nanotubes. , 2003, Physical review letters.

[50]  L. Pfeiffer,et al.  Thermodynamics of free trions in mixed type GaAs/AlAs quantum wells , 1996 .

[51]  Daniel Wolverson,et al.  Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2 , 2013 .

[52]  G. Rubio‐Bollinger,et al.  Optical identification of atomically thin dichalcogenide crystals , 2010, 1003.2602.

[53]  Yu Zhang,et al.  Epitaxial monolayer MoS2 on mica with novel photoluminescence. , 2013, Nano letters.

[54]  S. Lau,et al.  Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. , 2013, ACS nano.

[55]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[56]  O. Kolosov,et al.  Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates , 2013, Scientific Reports.

[57]  K. Balasubramanian,et al.  Marker-free on-the-fly fabrication of graphene devices based on fluorescence quenching , 2010, Nanotechnology.