Biosynthesis of vitamin B2 in plants

The biosynthesis of one riboflavin (vitamin B2) molecule requires one molecule of GTP and two molecules of ribulose 5-phosphate. The imidazole ring of GTP is hydrolytically opened, yielding a 2,5-diaminopyrimidine that is converted to 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione by a sequence of deamination, side chain reduction and dephosphorylation. Condensation of 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione with 3,4-dihydroxy-2-butanone 4-phosphate obtained from ribulose 5-phosphate yields 6,7-dimethyl-8-ribityllumazine. Dismutation of the lumazine derivative yields riboflavin and 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione, which is recycled in the biosynthetic pathway. Characteristic architectural features of most enzymes involved in the plant riboflavin pathway resemble those of eubacteria, whereas the similarities between plants and yeasts are less pronounced. Moreover, riboflavin biosynthesis in plants proceeds by the same reaction steps as in eubacteria, whereas fungi use a somewhat different pathway.

[1]  W. Eisenreich,et al.  Biosynthesis of Vitamin B2 , 2005, Journal of Biological Chemistry.

[2]  W. Römisch,et al.  Structures and reaction mechanisms of riboflavin synthases of eubacterial and archaeal origin. , 2005, Biochemical Society transactions.

[3]  Markus Fischer,et al.  Biosynthesis of flavocoenzymes. , 2005, Natural product reports.

[4]  Markus Fischer,et al.  Crystal structure of lumazine synthase from Mycobacterium tuberculosis as a target for rational drug design: binding mode of a new class of purinetrione inhibitors. , 2005, Biochemistry.

[5]  A. Bacher,et al.  Evolution of vitamin B2 biosynthesis: riboflavin synthase of Arabidopsis thaliana and its inhibition by riboflavin , 2005, Biological chemistry.

[6]  R. Huber,et al.  Evolution of vitamin B2 biosynthesis. A novel class of riboflavin synthase in Archaea. , 2004, Journal of molecular biology.

[7]  W. Römisch,et al.  Evolution of Vitamin B2 Biosynthesis , 2004, Journal of Biological Chemistry.

[8]  Robert Huber,et al.  Potential anti-infective targets in pathogenic yeasts: structure and properties of 3,4-dihydroxy-2-butanone 4-phosphate synthase of Candida albicans. , 2004, Journal of molecular biology.

[9]  A. Sancar Regulation of the Mammalian Circadian Clock by Cryptochrome* , 2004, Journal of Biological Chemistry.

[10]  R. Huber,et al.  Structural basis of charge transfer complex formation by riboflavin bound to 6,7-dimethyl-8-ribityllumazine synthase. , 2004, European journal of biochemistry.

[11]  S. Steinbacher,et al.  Metal sites in 3,4-dihydroxy-2-butanone 4-phosphate synthase from Methanococcus jannaschii in complex with the substrate ribulose 5-phosphate. , 2004, Acta crystallographica. Section D, Biological crystallography.

[12]  B. Braden,et al.  High Order Quaternary Arrangement Confers Increased Structural Stability to Brucella sp. Lumazine Synthase* , 2004, Journal of Biological Chemistry.

[13]  S. Steinbacher,et al.  Riboflavin synthase of Schizosaccharomyces pombe. Protein dynamics revealed by 19F NMR protein perturbation experiments , 2003, BMC Biochemistry.

[14]  S. Steinbacher,et al.  Structure of 3,4-Dihydroxy-2-butanone 4-Phosphate Synthase from Methanococcus jannaschii in Complex with Divalent Metal Ions and the Substrate Ribulose 5-Phosphate , 2003, Journal of Biological Chemistry.

[15]  A. Bacher,et al.  Temperature-dependent Presteady State Kinetics of Lumazine Synthase from the Hyperthermophilic Eubacterium Aquifex aeolicus* , 2003, Journal of Biological Chemistry.

[16]  Winfried Meining,et al.  The structure of the N-terminal domain of riboflavin synthase in complex with riboflavin at 2.6A resolution. , 2003, Journal of molecular biology.

[17]  B. Stoddard,et al.  The 1.14 A crystal structure of yeast cytosine deaminase: evolution of nucleotide salvage enzymes and implications for genetic chemotherapy. , 2003, Structure.

[18]  Markus Fischer,et al.  A structure-based model of the reaction catalyzed by lumazine synthase from Aquifex aeolicus. , 2003, Journal of molecular biology.

[19]  Robert Huber,et al.  Crystal structure of Schizosaccharomyces pombe riboflavin kinase reveals a novel ATP and riboflavin-binding fold. , 2003, Journal of molecular biology.

[20]  N. Grishin,et al.  Crystal structure of human riboflavin kinase reveals a beta barrel fold and a novel active site arch. , 2003, Structure.

[21]  R. Huber,et al.  Enzyme catalysis via control of activation entropy: site-directed mutagenesis of 6,7-dimethyl-8-ribityllumazine synthase. , 2003, Journal of molecular biology.

[22]  Hiroki Iida,et al.  Flavin catalyzed oxidations of sulfides and amines with molecular oxygen. , 2003, Journal of the American Chemical Society.

[23]  A. Bacher,et al.  Biosynthesis of vitamin B2. , 2002, European journal of biochemistry.

[24]  S. Steinbacher,et al.  Biosynthesis of Riboflavin in Archaea Studies on the Mechanism of 3,4-Dihydroxy-2-butanone-4-phosphate Synthase of Methanococcus jannaschii * , 2002, The Journal of Biological Chemistry.

[25]  S. Steinbacher,et al.  Studies on the reaction mechanism of riboflavin synthase: X-ray crystal structure of a complex with 6-carboxyethyl-7-oxo-8-ribityllumazine. , 2002, Structure.

[26]  S. Steinbacher,et al.  The structural basis of riboflavin binding to Schizosaccharomyces pombe 6,7-dimethyl-8-ribityllumazine synthase. , 2002, Journal of molecular biology.

[27]  D. Jordan,et al.  Structural definition of the active site and catalytic mechanism of 3,4-dihydroxy-2-butanone-4-phosphate synthase. , 2002, Biochemistry.

[28]  A. Bacher,et al.  Biosynthesis of Riboflavin , 2001, The Journal of Biological Chemistry.

[29]  P. Schmieder,et al.  The NMR structure of the 47-kDa dimeric enzyme 3,4-dihydroxy-2-butanone-4-phosphate synthase and ligand binding studies reveal the location of the active site , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[30]  W. Eisenreich,et al.  Biosynthesis of Riboflavin , 2001, Journal of Biological Chemistry.

[31]  A. Bacher,et al.  The solution structure of the N-terminal domain of riboflavin synthase. , 2001, Journal of molecular biology.

[32]  W. Eisenreich,et al.  A pentacyclic reaction intermediate of riboflavin synthase , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Z. Wawrzak,et al.  Crystal structure of riboflavin synthase. , 2001, Structure.

[34]  J C Watson,et al.  The Phototropin Family of Photoreceptors , 2001, Plant Cell.

[35]  A. Bacher,et al.  Riboflavin Synthase of Escherichia coli , 2001, The Journal of Biological Chemistry.

[36]  A. Bacher,et al.  X-ray structure analysis and crystallographic refinement of lumazine synthase from the hyperthermophile Aquifex aeolicus at 1.6 A resolution: determinants of thermostability revealed from structural comparisons. , 2001, Journal of molecular biology.

[37]  W. Eisenreich,et al.  Biosynthesis of riboflavin. , 2001, Vitamins and hormones.

[38]  Z. Wawrzak,et al.  Crystal structure of 3,4-dihydroxy-2-butanone 4-phosphate synthase of riboflavin biosynthesis. , 2001, Structure.

[39]  A. Bacher,et al.  The atomic structure of pentameric lumazine synthase from Saccharomyces cerevisiae at 1.85 A resolution reveals the binding mode of a phosphonate intermediate analogue. , 2000, Journal of molecular biology.

[40]  B. Braden,et al.  Divergence in macromolecular assembly: X-ray crystallographic structure analysis of lumazine synthase from Brucella abortus. , 2000, Journal of molecular biology.

[41]  A. Bacher,et al.  Biosynthesis of riboflavin in plants. The ribA gene of Arabidopsis thaliana specifies a bifunctional GTP cyclohydrolase II/3,4-dihydroxy-2-butanone 4-phosphate synthase. , 2000, Phytochemistry.

[42]  A. Bacher,et al.  Biosynthesis of vitamin b2 (riboflavin). , 2000, Annual review of nutrition.

[43]  A. Sancar,et al.  Cryptochrome: the second photoactive pigment in the eye and its role in circadian photoreception. , 2000, Annual review of biochemistry.

[44]  G. Schneider,et al.  Crystal structure analysis of a pentameric fungal and an icosahedral plant lumazine synthase reveals the structural basis for differences in assembly , 2000, Protein science : a publication of the Protein Society.

[45]  D. Jordan,et al.  Plant Riboflavin Biosynthesis , 1999, The Journal of Biological Chemistry.

[46]  J. Christie,et al.  LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nph1): binding sites for the chromophore flavin mononucleotide. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[47]  A. Bacher,et al.  Biosynthesis of riboflavin: an unusual riboflavin synthase of Methanobacterium thermoautotrophicum , 1997, Journal of bacteriology.

[48]  A. Bacher,et al.  Biosynthesis of riboflavin: characterization of the bifunctional deaminase-reductase of Escherichia coli and Bacillus subtilis , 1997, Journal of bacteriology.

[49]  A. Bacher,et al.  Biosynthesis of riboflavin: GTP cyclohydrolase II, deaminase, and reductase. , 1997, Methods in enzymology.

[50]  A. Bacher,et al.  Biosynthesis of Riboflavin , 1996, The Journal of Biological Chemistry.

[51]  R. Huber,et al.  Studies on the lumazine synthase/riboflavin synthase complex of Bacillus subtilis: crystal structure analysis of reconstituted, icosahedral beta-subunit capsids with bound substrate analogue inhibitor at 2.4 A resolution. , 1995, Journal of molecular biology.

[52]  M. Ahmad,et al.  Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1 , 1995, Science.

[53]  A. Bacher,et al.  Substrate Channeling in the Lumazine Synthase/Riboflavin Synthase Complex of Bacillus subtilis(*) , 1995, The Journal of Biological Chemistry.

[54]  A. Bacher,et al.  Biosynthesis of riboflavin. Studies on the reaction mechanism of 6,7-dimethyl-8-ribityllumazine synthase. , 1995, Biochemistry.

[55]  R. Huber,et al.  The lumazine synthase/riboflavin synthase complex of Bacillus subtilis. X-ray structure analysis of hollow reconstituted beta-subunit capsids. , 1994, European journal of biochemistry.

[56]  A. Sancar Structure and function of DNA photolyase. , 1994, Biochemistry.

[57]  J. Lee Lumazine protein and the excitation mechanism in bacterial bioluminescence. , 1993, Biophysical chemistry.

[58]  E. Meighen,et al.  Bacterial bioluminescence: organization, regulation, and application of the lux genes , 1993, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[59]  A. Bacher,et al.  Biosynthesis of riboflavin: cloning, sequencing, mapping, and expression of the gene coding for GTP cyclohydrolase II in Escherichia coli , 1993, Journal of bacteriology.

[60]  A. Bacher,et al.  Studies on the 4-carbon precursor in the biosynthesis of riboflavin. Purification and properties of L-3,4-dihydroxy-2-butanone-4-phosphate synthase. , 1990, The Journal of biological chemistry.

[61]  A. Bacher,et al.  Riboflavin synthases of Bacillus subtilis. Purification and amino acid sequence of the alpha subunit. , 1990, The Journal of biological chemistry.

[62]  R. Huber,et al.  Heavy riboflavin synthase from Bacillus subtilis. Crystal structure analysis of the icosahedral beta 60 capsid at 3.3 A resolution. , 1988, Journal of molecular biology.

[63]  A. Bacher,et al.  Biosynthesis of riboflavin: mechanism of formation of the ribitylamino linkage. , 1988, Biochemistry.

[64]  A. Bacher,et al.  Heavy riboflavin synthase from Bacillus subtilis. Quaternary structure and reaggregation. , 1986, Journal of molecular biology.

[65]  A. Bacher,et al.  Biosynthesis of riboflavin. Enzymatic formation of 6,7-dimethyl-8-ribityllumazine from pentose phosphates. , 1984, The Journal of biological chemistry.

[66]  A. Bacher,et al.  Biosynthesis of riboflavin. Characterization of the product of the deaminase. , 1981, Biochimica et biophysica acta.

[67]  A. Bacher,et al.  Riboflavin synthases of Bacillus subtilis. Purification and properties. , 1980, The Journal of biological chemistry.

[68]  F. Foor,et al.  [43] GTP cyclohydrolase II from Escherichia coli , 1980 .

[69]  G. Brown,et al.  Presence of Escherichia coli of a deaminase and a reductase involved in biosynthesis of riboflavin , 1978, Journal of bacteriology.

[70]  A. Bacher,et al.  Biosynthesis of riboflavin in Bacillus subtilis: function and genetic control of the riboflavin synthase complex , 1978, Journal of bacteriology.

[71]  G. Brown,et al.  Purification and properties of guanosine triphosphate cyclohydrolase II from Escherichia coli. , 1975, The Journal of biological chemistry.

[72]  W. Pfleiderer,et al.  Pteridine, LVII. Synthesen und Eigenschaften von Lumazin‐N‐oxiden , 1973 .

[73]  H. Wood,et al.  The biosynthesis of pteridines. VI. Studies of the mechanism of riboflavin biosynthesis. , 1972, Journal of the Chemical Society. Perkin transactions 1.

[74]  A. Bacher,et al.  Biosynthesis of riboflavin. Formation of 2,5-diamino-6-hydroxy-4-(1'-D-ribitylamino)pyrimidine in a riboflavin auxotroph. , 1970, The Journal of biological chemistry.

[75]  G. Plaut,et al.  Studies on the mechanism of elimination of protons from the methyl groups of 6,7-dimethyl-8-ribityllumazine by riboflavin synthetase. , 1970, Biochemistry.

[76]  G. Plaut,et al.  Investigations of structures of substituted lumazines by deuterium exchange and nuclear magnetic resonance spectroscopy. , 1970, Biochemistry.

[77]  H. Wood,et al.  Deuterium exchange of C-methyl protons in 6,7-dimethyl-8-D-ribityl-lumazine, and studies of the mechanism of riboflavin biosynthesis , 1969 .

[78]  Y. Tomozawa,et al.  STUDIES ON PLANT FLAVOKINASE , 1963 .

[79]  Yuzuru Suzuki,et al.  BIOGENESIS OF RIBOFLAVIN IN GREEN LEAVES , 1961 .

[80]  P. Krishnaswamy,et al.  Occurrence of Flavokinase Activity in Plants , 1957, Nature.