Numerical investigation of the kinetics and chemistry of rf glow discharge plasmas sustained in He, N2, O2, He/N2/O2, He/CF4/O2, and SiH4/NH3 using a Monte Carlo-fluid hybrid model

Capacitively coupled radio‐frequency (rf) glow discharges are standard sources in plasma assisted materials processing. Theoretical analyses of rf discharges have been hampered by the computational difficulty of simultaneously resolving nonequilibrium electron transport and plasma chemistry. We have developed a hybrid Monte Carlo‐fluid simulation that can simulate nonequilibrium electron transport while executing with the speed of a fluid simulation. An electron Monte Carlo simulation (EMCS) is used to calculate the electron energy distribution (EED) as a function of position and phase in the rf cycle. Collision rates and transport coefficients are calculated from the EED and used in a self‐consistent fluid model (SCFM) of charged particle behavior and a neutral chemistry/transport model. Electric fields from the SCFM are cycled back to the EMCS, and the process is iterated until convergence. All pertinent heavy particle (charged and neutral) reactions can be included as well as collisions of electrons with ions, excited states, and reaction products. The hybrid model is applied to a variety of gas mixtures of interest to materials processing.

[1]  A. Phelps Absorption Studies of Helium Metastable Atoms and Molecules , 1955 .

[2]  A. V. Phelps,et al.  ROTATIONAL EXCITATION AND MOMENTUM TRANSFER CROSS SECTIONS FOR ELECTRONS IN H2 AND N2 FROM TRANSPORT COEFFICIENTS , 1962 .

[3]  L. Vriens CALCULATION OF ABSOLUTE IONISATION CROSS SECTIONS OF He, He*, He +, Ne, Ne*, Ne +, Ar, Ar*, Hg and Hg* , 1964 .

[4]  D. Rapp,et al.  Total Cross Sections for Ionization and Attachment in Gases by Electron Impact. I. Positive Ionization , 1965 .

[5]  L. Friedman Ion-molecule reactions , 1968 .

[6]  H R Skullerud,et al.  The stochastic computer simulation of ion motion in a gas subjected to a constant electric field , 1968 .

[7]  P. F. Knewstubb Ion-Molecule Reactions , 1970, Nature.

[8]  J. Mauer,et al.  Measurement of Total Inelastic Cross Sections for Electron Impact in N2 and CO2 , 1972 .

[9]  P. Gaspar,et al.  Ion‐Molecule Reactions in Silane , 1972 .

[10]  W. L. Borst,et al.  EXCITATION OF THE METASTABLE E $sup 3$$Sigma$/sub g/$sup +$ STATE OF N$sub 2$ BY ELECTRON IMPACT. , 1972 .

[11]  M. Mitchner,et al.  Partially ionized gases , 1973 .

[12]  RICHARD BEALS I. Introduction , 1973 .

[13]  J. Dutton,et al.  A survey of electron swarm data , 1975 .

[14]  Yury I. Bychkov,et al.  Sov Phys Tech Phys , 1975 .

[15]  J. Bardsley,et al.  Monte Carlo simulation of ion motion in drift tubes , 1977 .

[16]  George Bekefi,et al.  Principles of laser plasmas , 1976 .

[17]  P. Monchicourt,et al.  High-pressure helium afterglow at room temperature , 1976 .

[18]  D. C. Cartwright,et al.  Electron impact excitation of the electronic states of N 2 . I. Differential cross sections at incident energies from 10 to 50 eV , 1977 .

[19]  D. Albritton Ion-Neutral Reaction-Rate Constants Measured in Flow Reactors through 1977 , 1978 .

[20]  W. Fon,et al.  Total cross sections for electron excitation transitions between the 11S, 23S, 21S, 23P and 21P states of atomic helium , 1981 .

[21]  J. Boeuf,et al.  A Monte Carlo analysis of an electron swarm in a nonuniform field: the cathode region of a glow discharge in helium , 1982 .

[22]  Mark J. Kushner,et al.  Monte‐Carlo simulation of electron properties in rf parallel plate capacitively coupled discharges , 1983 .

[23]  Phelps,et al.  Anisotropic scattering of electrons by N2 and its effect on electron transport. , 1985, Physical review. A, General physics.

[24]  Bayle,et al.  Cathode region of a transitory discharge in CO2. I. Theory of the cathode region. , 1986, Physical review. A, General physics.

[25]  Hiroaki Nishimura,et al.  Cross Sections for Collisions of Electrons and Photons with Oxygen Molecules , 1986 .

[26]  V. Godyak,et al.  Ion Bombardment Secondaty Electron Maintenance of Steady RF Discharge , 1986, IEEE Transactions on Plasma Science.

[27]  L. G. Piper Quenching rate coefficients for N2(a′ 1Σ−u) , 1987 .

[28]  M. Elta,et al.  Large‐signal time‐domain modeling of low‐pressure rf glow discharges , 1987 .

[29]  D. Graves Fluid model simulations of a 13.56‐MHz rf discharge: Time and space dependence of rates of electron impact excitation , 1987 .

[30]  J. Boeuf,et al.  Numerical model of rf glow discharges. , 1987, Physical review. A, General physics.

[31]  K. E. Greenberg,et al.  Pulsed‐ultraviolet laser Raman diagnostics of plasma processing discharges , 1988 .

[32]  A. Khacef,et al.  Study of two‐body and three‐body channels for the reaction of metastable helium atoms with selected atomic and molecular species , 1988 .

[33]  L. G. Piper State‐to‐state N2(A 3Σ+u) energy‐pooling reactions. I. The formation of N2(C 3Πu) and the Herman infrared system , 1988 .

[34]  Doughty,et al.  Laser optogalvanic and fluorescence studies of the cathode region of a glow discharge. , 1988, Physical review. A, General physics.

[35]  I. J. Morey,et al.  Self‐consistent simulation of a parallel‐plate rf discharge , 1988 .

[36]  A. Lichtenberg,et al.  Self‐consistent stochastic electron heating in radio frequency discharges , 1988 .

[37]  Mark J. Kushner,et al.  A model for the discharge kinetics and plasma chemistry during plasma enhanced chemical vapor deposition of amorphous silicon , 1988 .

[38]  David B. Graves Plasma processing in microelectronics manufacturing , 1989 .

[39]  D. Manos,et al.  Plasma etching : an introduction , 1989 .

[40]  A model of dc glow discharges with abnormal cathode fall , 1990 .

[41]  Weng,et al.  Method for including electron-electron collisions in Monte Carlo simulations of electron swarms in partially ionized gases. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[42]  Graves,et al.  Self-consistent model of a direct-current glow discharge: Treatment of fast electrons. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[43]  J. Norman Bardsley,et al.  Nonequilibrium processes in partially ionized gases , 1990 .

[44]  Donald L. Smith,et al.  Mechanism of SiN x H y Deposition from NH 3 ‐ SiH4 Plasma , 1990 .

[45]  Boeuf,et al.  Transition between different regimes of rf glow discharges. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[46]  P. Armentrout,et al.  Dissociative charge transfer reactions of Ar+, Ne+, and He+ with CF4 from thermal to 50 eV , 1990 .

[47]  J. Jasinski,et al.  Excimer laser photochemistry of silane-ammonia mixtures at 193 nm , 1990 .

[48]  K. E. Greenberg,et al.  Dissociation and product formation in NF3 radio‐frequency glow discharges , 1990 .

[49]  I. Haller Ion-molecule reactions in the silane-ammonia system , 1990 .

[50]  Godyak,et al.  Abnormally low electron energy and heating-mode transition in a low-pressure argon rf discharge at 13.56 MHz. , 1990, Physical review letters.

[51]  David B. Graves,et al.  Modeling and simulation of magnetically confined low-pressure plasmas in two dimensions , 1991 .

[52]  Harvey,et al.  Self-consistent kinetic calculations of helium rf glow discharges. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[53]  H. Tagashira,et al.  A hybrid Monte Carlo/fluid model of RF plasmas in a SiH/sub 4//H/sub 2/ mixture , 1991 .

[54]  G. Kroesen,et al.  Negative ions in a radio-frequency plasma in CF4 , 1991 .

[55]  Richard A. Gottscho,et al.  Ion and neutral temperatures in electron cyclotron resonance plasma reactors , 1991 .

[56]  M. Surendra,et al.  Particle simulations of radio-frequency glow discharges , 1991 .

[57]  Graves,et al.  Electron acoustic waves in capacitively coupled, low-pressure rf glow discharges. , 1991, Physical review letters.