Identification of an immunogenic cell death-related gene signature predicts survival and sensitivity to immunotherapy in clear cell renal carcinoma

[1]  A. Joerger,et al.  Discovery of Nanomolar-Affinity Pharmacological Chaperones Stabilizing the Oncogenic p53 Mutant Y220C , 2022, ACS pharmacology & translational science.

[2]  J. Bartram,et al.  Identification of a c-MYB-directed therapeutic for acute myeloid leukemia , 2022, Leukemia.

[3]  Jiuhong Yuan,et al.  Diagnostic significance of miRNAs as potential biomarkers for human renal cell carcinoma: a systematic review and meta-analysis , 2022, Expert review of anticancer therapy.

[4]  Yongxiang Li,et al.  OIP5 Is a Novel Prognostic Biomarker in Clear Cell Renal Cell Cancer Correlating With Immune Infiltrates , 2022, Frontiers in Immunology.

[5]  Jiantao Guo,et al.  A computational prognostic model of lncRNA signature for clear cell renal cell carcinoma with genome instability , 2021, Expert review of molecular diagnostics.

[6]  Xinwen Wang,et al.  An Immunogenic Cell Death-Related Classification Predicts Prognosis and Response to Immunotherapy in Head and Neck Squamous Cell Carcinoma , 2021, Frontiers in Immunology.

[7]  Xiaochen Bo,et al.  clusterProfiler 4.0: A universal enrichment tool for interpreting omics data , 2021, Innovation.

[8]  Chunyu Deng,et al.  Systematic Assessment of Transcriptomic Biomarkers for Immune Checkpoint Blockade Response in Cancer Immunotherapy , 2021, Cancers.

[9]  Xiaole Shirley Liu,et al.  TIMER2.0 for analysis of tumor-infiltrating immune cells , 2020, Nucleic Acids Res..

[10]  Huiming Jiang,et al.  Construction and validation of a seven-gene signature for predicting overall survival in patients with kidney renal clear cell carcinoma via an integrated bioinformatics analysis , 2020, Animal cells and systems.

[11]  F. Marincola,et al.  Consensus guidelines for the definition, detection and interpretation of immunogenic cell death , 2020, Journal for ImmunoTherapy of Cancer.

[12]  Masami Watanabe,et al.  Bufalin suppresses the proliferation and metastasis of renal cell carcinoma by inhibiting the PI3K/Akt/mTOR signaling pathway , 2018, Oncology letters.

[13]  Anh Nhat Tran,et al.  HPAanalyze: an R package that facilitates the retrieval and analysis of the Human Protein Atlas data , 2018, BMC Bioinformatics.

[14]  Joshua M. Stuart,et al.  Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation. , 2018, Cell.

[15]  N. Fleshner,et al.  Metastatic renal cell carcinoma: Patterns and predictors of metastases-A contemporary population-based series. , 2017, Urologic oncology.

[16]  Minsoo Song Recent developments in small molecule therapies for renal cell carcinoma. , 2017, European journal of medicinal chemistry.

[17]  Angela N. Brooks,et al.  A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles , 2017, Cell.

[18]  A. Evans,et al.  Management of Small Renal Masses: American Society of Clinical Oncology Clinical Practice Guideline. , 2017, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[19]  D. de Ruysscher,et al.  Immunological metagene signatures derived from immunogenic cancer cell death associate with improved survival of patients with lung, breast or ovarian malignancies: A large-scale meta-analysis , 2016, Oncoimmunology.

[20]  D. Ye,et al.  Pretreatment neutrophil-to-lymphocyte ratio predicts prognosis in patients with metastatic renal cell carcinoma receiving targeted therapy , 2016, International Journal of Clinical Oncology.

[21]  P. Agostinis,et al.  Immunogenic cell death. , 2015, The International journal of developmental biology.

[22]  L. Boon,et al.  Antitumor immunity triggered by melphalan is potentiated by melanoma cell surface-associated calreticulin. , 2015, Cancer research.

[23]  Lorenzo Marconi,et al.  EAU guidelines on renal cell carcinoma: 2014 update. , 2010, European urology.

[24]  P. Vandenabeele,et al.  Consensus guidelines for the detection of immunogenic cell death , 2014, Oncoimmunology.

[25]  S. Martin,et al.  Danger signalling during cancer cell death: origins, plasticity and regulation , 2013, Cell Death and Differentiation.

[26]  Gareth Williams SPIEDw: a searchable platform-independent expression database web tool , 2013, BMC Genomics.

[27]  A. Hakimi,et al.  A clear picture of renal cell carcinoma , 2013, Nature Genetics.

[28]  Laurence Zitvogel,et al.  Immunogenic cell death in cancer therapy. , 2013, Annual review of immunology.

[29]  H. Moch An overview of renal cell cancer: pathology and genetics. , 2013, Seminars in cancer biology.

[30]  Abhishek D. Garg,et al.  Immunogenic cell death and DAMPs in cancer therapy , 2012, Nature Reviews Cancer.

[31]  N. Gretz,et al.  Absent in Melanoma 2 (AIM2) is an important mediator of interferon-dependent and -independent HLA-DRA and HLA-DRB gene expression in colorectal cancers , 2011, Oncogene.

[32]  J. Mclaughlin,et al.  Renal cell cancer among African Americans: an epidemiologic review , 2011, BMC Cancer.

[33]  Matthew D. Wilkerson,et al.  ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking , 2010, Bioinform..

[34]  Steve Horvath,et al.  WGCNA: an R package for weighted correlation network analysis , 2008, BMC Bioinformatics.

[35]  S. Lange,et al.  Überlebenszeitanalyse: Der Log-Rang-Test , 2007 .

[36]  A. Jemal,et al.  Cancer Statistics, 2007 , 2007, CA: a cancer journal for clinicians.

[37]  Paul A Clemons,et al.  The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease , 2006, Science.

[38]  S. Chevret,et al.  [Survival analysis - the log rank test]. , 2005, Revue des maladies respiratoires.

[39]  N. Dubrawsky Cancer statistics , 1989, CA: a cancer journal for clinicians.