Reduction numbers of equimultiple ideals

Let (A,m) be an unmixed local ring containing a field. If J is an m-primary ideal with Hilbert-Samuel multiplicity eA(J), a recent result of Hickel shows that every element in the integral closure J satisfies an equation of integral dependence over J of degree at most eA(J). We extend this result to equimultiple ideals J by showing that the degree of such an equation of integral dependence is at most cq(J), where cq(J) is one of the elements of the so-called multiplicity sequence introduced by Achilles and Manaresi. As a consequence, if the characteristic of the field contained in A is zero, it follows that the reduction number of an equimultiple ideal J with respect to any minimal reduction is at most cq(J)− 1.

[1]  Cătălin Ciupercă Degrees of multiplicity functions for equimultiple ideals , 2016 .

[2]  M. Hickel Sur les Relations de Dépendance Intégrale sur un Idéal , 2013 .

[3]  Abhyankar BOUNDS FOR NUMBERS OF GENERATORS OF COHEN-MACAULAY IDEALS , 2012 .

[4]  W. Vasconcelos,et al.  Multiplicity of the special fiber of blowups , 2003, Mathematical Proceedings of the Cambridge Philosophical Society.

[5]  Craig Huneke,et al.  Integral closure of ideals, rings, and modules , 2006 .

[6]  W. Vasconcelos Multiplicities and Reduction Numbers , 2003, Compositio Mathematica.

[7]  Cătălin Ciupercă A numerical characterization of the S2-ification of a Rees algebra , 2002, math/0209293.

[8]  M. Rossi A bound on the reduction number of a primary ideal , 1999 .

[9]  Wolmer V. Vasconcelos,et al.  Reduction Numbers of Ideals , 1999 .

[10]  W. Vasconcelos Cohomological Degrees of Graded Modules , 1998 .

[11]  Rüdiger Achilles,et al.  Multiplicities of a bigraded ring and intersection theory , 1997 .

[12]  Rüdiger Achilles,et al.  Multiplicity for ideals of maximal analytic spread and intersection theory , 1993 .

[13]  W. Bruns,et al.  Cohen-Macaulay rings , 1993 .

[14]  L. O'Carroll,et al.  EQUIMULTIPLICITY AND BLOWING UP: An Algebraic Study with an Appendix by B. Moonen , 1990 .

[15]  Miles Reid,et al.  Commutative Ring Theory , 1989 .

[16]  Shin Ikeda,et al.  Equimultiplicity and blowing up , 1988 .

[17]  M. Herrmann,et al.  Graded Cohen-Macaulay rings associated to equimultiple ideals , 1984 .

[18]  L. Ratliff Locally quasi-unmixed Noetherian rings and ideals of the principal class , 1974 .

[19]  Günter Scheja Über ganz-algebraische Abhängigkeit in der Idealtheorie , 1970 .

[20]  Erwin Bo¨ger Eine verallgemeinerung eines multiplizita¨tensatzes von D. Rees , 1969 .