The synthesis of Bcr-Abl inhibiting anticancer pharmaceutical agents imatinib, nilotinib and dasatinib.

Imatinib (1), nilotinib (2) and dasatinib (3) are Bcr-Abl tyrosine kinase inhibitors approved for the treatment of chronic myelogenous leukemia (CML). This review collates information from the journal and patent literature to provide a comprehensive reference source of the different synthetic methods used to prepare the aforementioned active pharmaceutical ingredients (API's).

[1]  Dac-Trung Nguyen,et al.  Examining the chirality, conformation and selective kinase inhibition of 3-((3R,4R)-4-methyl-3-(methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)piperidin-1-yl)-3-oxopropanenitrile (CP-690,550). , 2008, Journal of medicinal chemistry.

[2]  S. Wedge,et al.  Novel 4-anilinoquinazolines with C-7 basic side chains: design and structure activity relationship of a series of potent, orally active, VEGF receptor tyrosine kinase inhibitors. , 2002, Journal of medicinal chemistry.

[3]  F. Lee,et al.  Dasatinib (BMS-354825) inhibits KITD816V, an imatinib-resistant activating mutation that triggers neoplastic growth in most patients with systemic mastocytosis. , 2006, Blood.

[4]  A. Kamatani,et al.  Fit-for-Purpose Development of the Enabling Route to Crizotinib (PF-02341066) , 2011 .

[5]  S. Buchwald,et al.  Completely N1-selective palladium-catalyzed arylation of unsymmetric imidazoles: application to the synthesis of nilotinib. , 2012, Journal of the American Chemical Society.

[6]  O. Witte,et al.  Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. , 1990, Science.

[7]  O. Witte,et al.  Molecular pathogenesis of Ph-positive leukemias. , 1989, Annual review of medicine.

[8]  K. Lackey,et al.  Optimization and SAR for dual ErbB-1/ErbB-2 tyrosine kinase inhibition in the 6-furanylquinazoline series. , 2006, Bioorganic & medicinal chemistry letters.

[9]  G. Superti-Furga,et al.  Structural Basis for the Autoinhibition of c-Abl Tyrosine Kinase , 2003, Cell.

[10]  P. Krogsgaard‐Larsen,et al.  New methods for the introduction of substitutents into thiazoles , 1992 .

[11]  Bang-Chi Chen,et al.  A new facile synthesis of 2-aminothiazole-5-carboxylates , 2001 .

[12]  Zoltán Varga,et al.  Acid-base profiling of imatinib (gleevec) and its fragments. , 2005, Journal of medicinal chemistry.

[13]  F. Leonetti,et al.  Microwave-assisted solid phase synthesis of Imatinib, a blockbuster anticancer drug , 2007 .

[14]  P. Nowell,et al.  A minute chromosome in human chronic granulocytic leukemia , 1960 .

[15]  A. S. Ivanov,et al.  Synthesis of imatinib: a convergent approach revisited , 2009 .

[16]  J. Mestan,et al.  Imatinib (STI571) resistance in chronic myelogenous leukemia: molecular basis of the underlying mechanisms and potential strategies for treatment. , 2004, Mini reviews in medicinal chemistry.

[17]  L. Forlani,et al.  A new synthesis of chloroheterocycles via metalhalogen exchange between trichloroacetyl derivatives and heteroaromatic lithium and Grignard reagents , 1999 .

[18]  Shu Yu,et al.  Development of an Effective Palladium Removal Process for VEGF Oncology Candidate AG13736 and a Simple, Efficient Screening Technique for Scavenger Reagent Identification , 2008 .

[19]  Gerhard Dürnberger,et al.  Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. , 2007, Blood.

[20]  B. Druker Circumventing resistance to kinase-inhibitor therapy. , 2006, The New England journal of medicine.

[21]  Johanna M Jansen,et al.  Design, structure-activity relationships and in vivo characterization of 4-amino-3-benzimidazol-2-ylhydroquinolin-2-ones: a novel class of receptor tyrosine kinase inhibitors. , 2009, Journal of medicinal chemistry.

[22]  Wei-Sheng Huang,et al.  Discovery of 3-[2-(imidazo[1,2-b]pyridazin-3-yl)ethynyl]-4-methyl-N-{4-[(4-methylpiperazin-1-yl)methyl]-3-(trifluoromethyl)phenyl}benzamide (AP24534), a potent, orally active pan-inhibitor of breakpoint cluster region-abelson (BCR-ABL) kinase including the T315I gatekeeper mutant. , 2010, Journal of medicinal chemistry.

[23]  S. Shepard,et al.  Enantioselective synthesis of Janus kinase inhibitor INCB018424 via an organocatalytic aza-Michael reaction. , 2009, Organic Letters.

[24]  G. Jenster,et al.  Acute leukaemia in bcr/abl transgenic mice , 1990, Nature.

[25]  Jürg Zimmermann,et al.  Potent and selective inhibitors of the Abl-kinase: phenylamino-pyrimidine (PAP) derivatives , 1997 .

[26]  Yifan Liu,et al.  A Facile Total Synthesis of Imatinib Base and Its Analogues , 2008 .

[27]  D. Fabbro,et al.  Phenylamino‐Pyrimidine (PAP) Derivatives: A New Class of Potent and Selective Inhibitors of Protein Kinase C (PKC) , 1996, Archiv der Pharmazie.

[28]  I. Beletskaya,et al.  Copper in cross-coupling reactions: The post-Ullmann chemistry , 2004 .

[29]  Peter Traxler,et al.  Phenylamino-pyrimidine (PAP) — derivatives: a new class of potent and highly selective PDGF-receptor autophosphorylation inhibitors , 1996 .

[30]  S. Kopp-Kubel,et al.  International Nonproprietary Names (INN) for Pharmaceutical Substances , 1978 .

[31]  R. Morphy Selectively nonselective kinase inhibition: striking the right balance. , 2010, Journal of medicinal chemistry.

[32]  Steven V Ley,et al.  A flow-based synthesis of imatinib: the API of Gleevec. , 2010, Chemical communications.

[33]  S. Buchwald,et al.  A highly active catalyst for Pd-catalyzed amination reactions: cross-coupling reactions using aryl mesylates and the highly selective monoarylation of primary amines using aryl chlorides. , 2008, Journal of the American Chemical Society.

[34]  B. Riedl,et al.  A Scaleable Synthesis of BAY 43-9006: A Potent Raf Kinase Inhibitor for the Treatment of Cancer , 2002 .

[35]  Richard J Ingham,et al.  A "catch-react-release" method for the flow synthesis of 2-aminopyrimidines and preparation of the Imatinib base. , 2012, Organic letters.

[36]  W. Shakespeare,et al.  An Efficient Synthesis of Nilotinib (AMN107) , 2007 .

[37]  D. Boschelli,et al.  Optimization of 4-phenylamino-3-quinolinecarbonitriles as potent inhibitors of Src kinase activity. , 2001, Journal of medicinal chemistry.

[38]  Jin Li,et al.  Synthetic approaches to the 2009 new drugs. , 2011, Bioorganic & medicinal chemistry.

[39]  K. Wehrstedt,et al.  Safe transport of cyanamide. , 2009, Journal of hazardous materials.

[40]  C. Bokemeyer,et al.  Dasatinib (BMS-354825), a dual SRC/ABL kinase inhibitor, inhibits the kinase activity of wild-type, juxtamembrane, and activation loop mutant KIT isoforms associated with human malignancies. , 2006, Cancer research.

[41]  C. Sawyers,et al.  Comparative analysis of two clinically active BCR-ABL kinase inhibitors reveals the role of conformation-specific binding in resistance. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[42]  J. Fowler,et al.  Synthesis and positron emission tomography studies of carbon-11-labeled imatinib (Gleevec). , 2007, Nuclear medicine and biology.

[43]  W. Clegg,et al.  Researches on Pyrimidines: Certain Derivatives of 2-Methylpyrimidine , 1952 .

[44]  M. Wittekind,et al.  The structure of Dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants. , 2006, Cancer research.

[45]  Ramaswamy Nilakantan,et al.  Optimization of 6,7-disubstituted-4-(arylamino)quinoline-3-carbonitriles as orally active, irreversible inhibitors of human epidermal growth factor receptor-2 kinase activity. , 2005, Journal of medicinal chemistry.

[46]  A. Gewirtz,et al.  Short interfering RNA (siRNA) targeting the Lyn kinase induces apoptosis in primary, and drug-resistant, BCR-ABL1(+) leukemia cells , 2004, Nature Medicine.

[47]  L. Brandsma,et al.  An Efficient Synthesis of 1,3-Thiazole , 1985 .

[48]  J U Gutterman,et al.  The molecular genetics of Philadelphia chromosome-positive leukemias. , 1988, The New England journal of medicine.

[49]  S. Buchwald,et al.  Palladium-Catalyzed Coupling of Functionalized Primary and Secondary Amines with Aryl and Heteroaryl Halides: Two Ligands Suffice in Most Cases. , 2010, Chemical science.

[50]  A. Baxter,et al.  Some regioselective cross-coupling reactions of halopyridines and halopyrimidines , 2002 .

[51]  L. Forlani,et al.  Tetrahalogenomethanes: simple reagents for the synthesis of monohalogenated and mixed dihalogenated aromatic heterocycles via metal–halogen exchange from lithium compounds , 2000 .

[52]  M. Taillefer,et al.  Catalytic C-C, C-N, and C-O Ullmann-type coupling reactions. , 2009, Angewandte Chemie.

[53]  John Kuriyan,et al.  Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571). , 2001, Cancer research.

[54]  A. Sirvent,et al.  Cytoplasmic signalling by the c‐Abl tyrosine kinase in normal and cancer cells , 2008, Biology of the cell.

[55]  Ping Chen,et al.  Discovery of N-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4- ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. , 2004, Journal of medicinal chemistry.

[56]  Yun Dai,et al.  A Bcr/Abl-independent, Lyn-dependent Form of Imatinib Mesylate (STI-571) Resistance Is Associated with Altered Expression of Bcl-2* , 2004, Journal of Biological Chemistry.

[57]  A. Gilmartin,et al.  Discovery of a Highly Potent and Selective MEK Inhibitor: GSK1120212 (JTP-74057 DMSO Solvate). , 2011, ACS medicinal chemistry letters.

[58]  R. Ren,et al.  Mechanisms of BCR–ABL in the pathogenesis of chronic myelogenous leukaemia , 2005, Nature Reviews Cancer.

[59]  Ping Chen,et al.  2-aminothiazole as a novel kinase inhibitor template. Structure-activity relationship studies toward the discovery of N-(2-chloro-6-methylphenyl)-2-[[6-[4-(2-hydroxyethyl)-1- piperazinyl)]-2-methyl-4-pyrimidinyl]amino)]-1,3-thiazole-5-carboxamide (dasatinib, BMS-354825) as a potent pan-Src kinase in , 2006, Journal of medicinal chemistry.

[60]  R. Vaidyanathan,et al.  Early amidation approach to 3-[(4-amido)pyrrol-2-yl]-2-indolinones. , 2003, The Journal of organic chemistry.

[61]  Steven V Ley,et al.  An expeditious synthesis of imatinib and analogues utilising flow chemistry methods. , 2013, Organic & biomolecular chemistry.

[62]  U. Jordis,et al.  Improved synthesis of substituted 6,7-dihydroxy-4-quinazolineamines: tandutinib, erlotinib and gefitinib. , 2006, Molecules.

[63]  G. Kéri,et al.  Interaction of tyrosine kinase inhibitors with the human multidrug transporter proteins, MDR1 and MRP1. , 2002, Biochimica et biophysica acta.

[64]  Ping Chen,et al.  Overriding Imatinib Resistance with a Novel ABL Kinase Inhibitor , 2004, Science.

[65]  D. Hart The spiroquinazoline family of alkaloids: a review , 2010 .

[66]  A. Hochhaus,et al.  Imatinib therapy in chronic myelogenous leukemia: strategies to avoid and overcome resistance , 2004, Leukemia.

[67]  Donna Neuberg,et al.  Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. , 2005, Cancer cell.

[68]  G. Muir,et al.  66. Reactions of certain thiazoles and glyoxalines with picryl chloride and 2 : 4-dinitrochlorobenzene , 1942 .

[69]  G. Sledge,et al.  Synthesis of [11C]Iressa as a new potential PET cancer imaging agent for epidermal growth factor receptor tyrosine kinase. , 2006, Bioorganic & medicinal chemistry letters.

[70]  C. Dominguez,et al.  A soluble base for the copper-catalyzed imidazole N-arylations with aryl halides. , 2005, The Journal of organic chemistry.

[71]  So Ha Lee,et al.  Design and synthesis of new anticancer pyrimidines with multiple-kinase inhibitory effect. , 2010, Bioorganic & medicinal chemistry.

[72]  J. Mestan,et al.  In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. , 2005, Cancer research.

[73]  Alex Matter,et al.  Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug , 2002, Nature Reviews Drug Discovery.