Solving generalized eigenvalue problems for large scale fluid-structure computational models with mid-power computers

Abstract This article proposes a method for solving generalized eigenvalue problems on medium-power computers with a moderate memory in the particular context of studying fluid-structure systems with sloshing and capillarity. This research was performed following many RAM problems encountered when computing the modal characterization of the system studied. The methodology proposed is one solution to reduce RAM and time required for the computation, by using methods such as double projection or subspace iterations.

[1]  Robert Finn,et al.  The contact angle in capillarity , 2006 .

[2]  Ilse C. F. Ipsen,et al.  The Impact of Parallel Architectures on The Solution of Eigenvalue Problems , 1986 .

[3]  Vassilios Theofilis,et al.  Massively Parallel Solution of the BiGlobal Eigenvalue Problem Using Dense Linear Algebra , 2009 .

[4]  Klaus-Jürgen Bathe,et al.  The subspace iteration method - Revisited , 2013 .

[5]  P. A. Martin Advanced Computational Vibroacoustics: Reduced-Order Models and Uncertainty Quantification , 2015 .

[6]  Y. Saad Numerical Methods for Large Eigenvalue Problems , 2011 .

[7]  Takahiro Katagiri,et al.  An efficient implementation of parallel eigenvalue computation for massively parallel processing , 2000, Parallel Comput..

[8]  Chao Yang,et al.  Parallel eigenvalue calculation based on multiple shift-invert Lanczos and contour integral based spectral projection method , 2014, Parallel Comput..

[9]  Jack J. Dongarra,et al.  A Parallel Divide and Conquer Algorithm for the Symmetric Eigenvalue Problem on Distributed Memory Architectures , 1999, SIAM J. Sci. Comput..

[10]  Robert Finn,et al.  On the Equations of Capillarity , 2001 .

[11]  H. Simon,et al.  A parallel Lanczos method for symmetric generalized eigenvalue problems , 1999 .

[12]  P. Concus,et al.  Correction for Concus and Finn, On the behavior of a capillary surface in a wedge , 1969, Proceedings of the National Academy of Sciences.

[13]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[14]  Jack J. Dongarra,et al.  Software Libraries for Linear Algebra Computations on High Performance Computers , 1995, SIAM Rev..

[15]  Victorita Dolean,et al.  An introduction to domain decomposition methods - algorithms, theory, and parallel implementation , 2015 .

[16]  D. D. Kana,et al.  An experimental study of liquid instability in a vibrating elastic tank. , 1966 .

[17]  Christian Soize,et al.  Vibration of structures containing compressible liquids with surface tension and sloshing effects. Reduced-order model , 2015 .

[18]  R. Brent,et al.  The Solution of Singular-Value and Symmetric Eigenvalue Problems on Multiprocessor Arrays , 1985 .

[19]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[20]  Jürgen Götze,et al.  An Efficient Jacobi-like Algorithm for Parallel Eigenvalue Computation , 1993, IEEE Trans. Computers.

[21]  David S. Watkins QR -like algorithms for eigenvalue problems , 2000 .

[22]  Jack J. Dongarra,et al.  A fully parallel algorithm for the symmetric eigenvalue problem , 1985, PPSC.

[23]  U. S. Lindholm,et al.  Breathing Vibrations of a Circular Cylindrical Shell With an Internal Liquid , 1962 .

[24]  Yousef Saad,et al.  Domain decomposition approaches for accelerating contour integration eigenvalue solvers for symmetric eigenvalue problems , 2018, Numer. Linear Algebra Appl..

[25]  Ki-Tae Kim,et al.  The Bathe subspace iteration method enriched by turning vectors , 2017 .

[26]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[27]  Danny C. Sorensen,et al.  Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..

[28]  Danny C. Sorensen,et al.  Deflation Techniques for an Implicitly Restarted Arnoldi Iteration , 1996, SIAM J. Matrix Anal. Appl..

[29]  Christina Kluge,et al.  Fluid Structure Interaction , 2016 .

[30]  Hiroto Imachi,et al.  Hybrid Numerical Solvers for Massively Parallel Eigenvalue Computations and Their Benchmark with Electronic Structure Calculations , 2015, J. Inf. Process..

[31]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[32]  Françoise Chatelin Eigenvalues of Matrices: Revised Edition , 2012 .

[33]  Andrés Tomás,et al.  Parallel Arnoldi eigensolvers with enhanced scalability via global communications rearrangement , 2007, Parallel Comput..

[34]  K. Bathe Finite Element Procedures , 1995 .

[35]  K. Bathe,et al.  Analysis of fluid-structure interactions. a direct symmetric coupled formulation based on the fluid velocity potential , 1985 .

[36]  James Demmel,et al.  ScaLAPACK: A Portable Linear Algebra Library for Distributed Memory Computers - Design Issues and Performance , 1995, Proceedings of the 1996 ACM/IEEE Conference on Supercomputing.