Symmetry-engineered nodal lines and hourglass fermions in patterned two-dimensional electron gas

[1]  Jian-Tao Wang,et al.  Topological nodal line semimetal in an all-sp 2 monoclinic carbon , 2022, New Journal of Physics.

[2]  R. Birgeneau,et al.  Nonsymmorphic symmetry-protected band crossings in a square-net metal PtPb4 , 2022, npj Quantum Materials.

[3]  R. Zheng,et al.  Nontrivial Giant Linear Magnetoresistance in Nodal-Line Semimetal ZrGeSe 2D Layers. , 2021, Nano letters.

[4]  C. Stampfl,et al.  A Dirac-semimetal two-dimensional BeN4: Thickness-dependent electronic and optical properties , 2021 .

[5]  Weisheng Zhao,et al.  Prediction of crossing nodal-lines and large intrinsic spin Hall conductivity in topological Dirac semimetal Ta3As family , 2021, npj Computational Materials.

[6]  H. Choi,et al.  Wallpaper Dirac Fermion in a Nonsymmorphic Topological Kondo Insulator: PuB4. , 2020, Journal of the American Chemical Society.

[7]  C. Delerue,et al.  p Orbital Flat Band and Dirac Cone in the Electronic Honeycomb Lattice , 2020, ACS nano.

[8]  Jinlong Yang,et al.  Creation of Dirac nodal line by extrinsic symmetry engineering. , 2020, Nano letters.

[9]  M. Kanatzidis,et al.  A new three-dimensional subsulfide Ir2In8S with Dirac semimetal behavior. , 2019, Journal of the American Chemical Society.

[10]  Wenge Yang,et al.  Pressure-induced superconductivity and topological phase transitions in the topological nodal-line semimetal SrAs3 , 2019, npj Quantum Materials.

[11]  Z. K. Liu,et al.  Magnetic Weyl semimetal phase in a Kagomé crystal , 2019, Science.

[12]  Lizhong Sun,et al.  New type of hybrid nodal line semimetal in Be2Si , 2019, New Journal of Physics.

[13]  M. Grioni,et al.  The growth and band structure of a graphene-encapsulated two-dimensional nodal line semimetal: Cu2Si , 2019, Electronic Structure.

[14]  Peter Bøggild,et al.  Lithographic band structure engineering of graphene , 2019, Nature Nanotechnology.

[15]  A. Millis,et al.  Optical signatures of Dirac nodal lines in NbAs2 , 2018, Proceedings of the National Academy of Sciences.

[16]  A. Alam,et al.  Emergence of Topological insulator and Nodal line semi-metal states in XX′Bi (X = Na, K, Rb, Cs; X′ = Ca, Sr) , 2018, Scientific Reports.

[17]  S. Du,et al.  Epitaxial Growth of Honeycomb Monolayer CuSe with Dirac Nodal Line Fermions , 2018, Advanced materials.

[18]  S. Kou,et al.  Type-II nodal line semimetal , 2017, 1709.08287.

[19]  C. Kane,et al.  Wallpaper fermions and the nonsymmorphic Dirac insulator , 2017, Science.

[20]  Y. Liu,et al.  Hourglass Dirac chain metal in rhenium dioxide , 2017, Nature Communications.

[21]  Cheng-Cheng Liu,et al.  Experimental realization of two-dimensional Dirac nodal line fermions in monolayer Cu2Si , 2016, Nature Communications.

[22]  S. Louie,et al.  Generation of Anisotropic Massless Dirac Fermions and Asymmetric Klein Tunneling in Few-Layer Black Phosphorus Superlattices. , 2016, Nano letters.

[23]  Binghai Yan,et al.  Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn , 2016, New Journal of Physics.

[24]  L. Sheng,et al.  CaTe: a new topological node-line and Dirac semimetal , 2016, 1605.07998.

[25]  Shik Shin,et al.  Experimental evidence of hourglass fermion in the candidate nonsymmorphic topological insulator KHgSb , 2016, Science Advances.

[26]  C. Felser,et al.  Signature of type-II Weyl semimetal phase in MoTe2 , 2016, Nature Communications.

[27]  P. Coleman,et al.  Möbius Kondo insulators , 2016, Nature Physics.

[28]  Zhijun Wang,et al.  Hourglass fermions , 2016, Nature.

[29]  C. Hellberg,et al.  Electron pairing without superconductivity , 2015, Nature.

[30]  Zhenyu Li,et al.  Obtaining two-dimensional electron gas in free space without resorting to electron doping: an electride based design. , 2014, Journal of the American Chemical Society.

[31]  Zhirong Liu,et al.  Dirac cones in two-dimensional systems: from hexagonal to square lattices. , 2013, Physical chemistry chemical physics : PCCP.

[32]  Francisco Guinea,et al.  Designer Dirac fermions and topological phases in molecular graphene , 2012, Nature.

[33]  T. Jung,et al.  Band Formation from Coupled Quantum Dots Formed by a Nanoporous Network on a Copper Surface , 2009, Science.

[34]  Xi Dai,et al.  Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface , 2009 .

[35]  Jeremy Levy,et al.  Oxide Nanoelectronics on Demand , 2009, Science.

[36]  S. Louie,et al.  Making massless Dirac fermions from a patterned two-dimensional electron gas. , 2008, Nano letters.

[37]  D. Hsieh,et al.  A topological Dirac insulator in a quantum spin Hall phase , 2008, Nature.

[38]  S. K. Lyo,et al.  Negative differential conductance in two-dimensional electron grids , 2008 .

[39]  Shou-Cheng Zhang,et al.  Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells , 2006, Science.

[40]  S. Wind,et al.  Observation of Dirac bands in artificial graphene in small-period nanopatterned GaAs quantum wells , 2017, Nature Nanotechnology.

[41]  J. Devreese,et al.  The physics of the two-dimensional electron gas , 1987 .