Weak ε-nets and interval chains

We construct weak ε-nets of almost linear size for certain types of point sets. Specifically, for planar point sets in convex position we construct weak 1/<i>r</i>-nets of size <i>O(rα(r))</i>, where <i>α(r)</i> denotes the inverse Ackermann function. For point sets along the moment curve in ℝ<i><sup>d</sup></i> we construct weak 1/<i>r</i>-nets of size <i>r</i> · 2<sup>poly<i>(α(r))</i></sup>, where the degree of the polynomial in the exponent depends (quadratically) on <i>d.</i> Our constructions result from a reduction to a new problem, which we call <i>stabbing interval chains with j-tuples.</i> Given the range of integers <i>N</i> = [1,<i>n</i>], an interval chain of length <i>k</i> is a sequence of <i>k</i> consecutive, disjoint, nonempty intervals contained in <i>N.</i> A <i>j</i>-tuple &pmacr; is said to <i>stab</i> an interval chain <i>C = I<sub>1</sub> … I<sub>k</sub></i> if each <i>p<sub>i</sub></i> falls on a different interval of <i>C.</i> The problem is to construct a small-size family Z of <i>j</i>-tuples that stabs all <i>k</i>-interval chains in <i>N.</i> Let <i>z<sub>k</sub><sup>(j)</sup>(n)</i> denote the minimum size of such a family Z. We derive almost-tight upper and lower bounds for <i>z<sub>k</sub><sup>(j)</sup>(n)</i> for every fixed <i>j;</i> our bounds involve functions <i>α<sub>m</sub>(n)</i> of the inverse Ackermann hierarchy. Specifically, we show that for <i>j</i> = 3 we have <i>z<sub>k</sub><sup>(3)</sup>(n)</i> = Θ for all <i>k</i> ≥ 6. For each <i>j</i> ≥ 4 we construct a pair of functions <i>P'<sub>j</sub>(m), Q'<sub>j</sub>(m)</i>, almost equal asymptotically, such that <i>z(j)<sub>P'<sub>j</sub>(m)</sub>(n)=O(nα<sub>m</sub>(n))</i> and <i>z(j)<sub>Q'<sub>j</sub>(m)</sub>(n)=Ω(nα<sub>m</sub>(n))</i>.

[1]  Maryam Babazadeh,et al.  Small Weak Epsilon-Nets in Three Dimensions , 2006, CCCG.

[2]  Richard J. Lipton,et al.  Unbounded Fan-In Circuits and Associative Functions , 1985, J. Comput. Syst. Sci..

[3]  Micha Sharir,et al.  Davenport-Schinzel sequences and their geometric applications , 1995, Handbook of Computational Geometry.

[4]  Dan Suciu,et al.  Journal of the ACM , 2006 .

[5]  H. Edelsbrunner,et al.  Improved bounds on weak ε-nets for convex sets , 1995, Discret. Comput. Geom..

[6]  Richard J. Lipton,et al.  Unbounded fan-in circuits and associative functions , 1983, J. Comput. Syst. Sci..

[7]  Pavel Pudlák,et al.  Communication in bounded depth circuits , 1994, Comb..

[8]  Raimund Seidel Understanding the Inverse Ackermann Function , 2006 .

[9]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[10]  Franz Aurenhammer,et al.  Small weak epsilon nets , 2005, CCCG.

[11]  Noga Alon,et al.  Point Selections and Weak ε-Nets for Convex Hulls , 1992, Combinatorics, Probability and Computing.

[12]  Micha Sharir,et al.  Algorithms for Weak "-nets , 1995 .

[13]  Jirí Matousek,et al.  A Lower Bound for Weak ɛ -Nets in High Dimension , 2002, Discret. Comput. Geom..

[14]  Bernard Chazelle,et al.  The complexity of computing partial sums off-line , 1991, Int. J. Comput. Geom. Appl..

[15]  M. Sharir,et al.  Davenport{schinzel Sequences and Their Geometric Applications 1 Davenport{schinzel Sequences and Their Geometric Applications , 1995 .

[16]  Rajamani Sundar,et al.  On the deque conjecture for the splay algorithm , 1992, Comb..

[17]  Avi Wigderson,et al.  Superconcentrators, generalizers and generalized connectors with limited depth , 1983, STOC.

[18]  Nabil H. Mustafa,et al.  Weak ε-nets have basis of size o(1/ε log (1/ε)) in any dimension , 2007, SCG '07.

[19]  Jirí Matousek,et al.  New Constructions of Weak ε-Nets , 2004, Discret. Comput. Geom..

[20]  Anne Condon,et al.  A limit theorem for sets of stochastic matrices , 2004 .

[21]  Leonidas J. Guibas,et al.  Improved bounds on weak ε-nets for convex sets , 1993, STOC.

[22]  Nabil H. Mustafa,et al.  Weak epsilon-nets have basis of size O(1/epsilonlog(1/epsilon)) in any dimension , 2008, Comput. Geom..

[23]  Phillip G. Bradford,et al.  Weak ɛ-Nets for Points on a Hypersphere , 1997, Discret. Comput. Geom..

[24]  Andrew Chi-Chih Yao,et al.  Space-time tradeoff for answering range queries (Extended Abstract) , 1982, STOC '82.