Thermodynamics and characterization of shape memory Cu−Al−Zn alloys

Abstract The thermodynamic properties and the microstructure, hardness and electrical conductivity of shape memory alloys (SMAs) belonging to ternary Cu–Al–Zn system were studied by Muggianu model and experiment, respectively. The isothermal section of phase diagram at 293 K was calculated using Thermo-Calc software. Experiments were conducted by X-ray diffraction, light optic microscopy, scanning electron microscopy with energy dispersive X-ray spectrometry, hardness and electrical conductivity measurements. The calculated values of thermodynamic properties indicate that Cu shows good miscibility with Al and Zn in all investigated alloys. The microstructural analysis of samples reveals that the structure consists of large and polygonal grains.

[1]  S. A. Mey Reevaluation of the Al - Zn System , 1993 .

[2]  G. W. Toop,et al.  Predicting Ternary Activities Using Binary Data , 1965 .

[3]  S. Sugino,et al.  Effects of Aluminum and Nickel on the Activity of Zinc in Molten Copper , 1986 .

[4]  Maria Victoria Biezma Moraleda,et al.  How much background in chemistry do material science and engineering students require , 2010 .

[5]  Huibin Xu,et al.  Calorimetric investigation of a Cu-Zn-Al alloy with two way shape memory , 1995 .

[6]  Ivan Anžel,et al.  Microstructure of rapidly solidified Cu–Al–Ni shape memory alloy ribbons , 2005 .

[7]  J. Fernández,et al.  Effect of small γ-precipitates on the two-way shape memory effect in Cu–Zn–Al alloys , 2000 .

[8]  T. Savaşkan,et al.  Relationships between cooling rate, copper content and mechanical properties of monotectoid based Zn-Al-Cu alloys , 2003 .

[9]  J. Garay,et al.  Processing and mechanical behavior of Zn–Al–Cu porous alloys , 2007 .

[10]  Xiao-qian Li,et al.  Strength and fatigue fracture behavior of Al–Zn–Mg–Cu–Zr(–Sn) alloys , 2013 .

[11]  Y. Muggianu,et al.  Enthalpies de formation des alliages liquides bismuth-étain-gallium à 723 k. Choix d’une représentation analytique des grandeurs d’excès intégrales et partielles de mélange , 1975 .

[12]  A. Dinsdale,et al.  The development of the COST 531 lead-free solders thermodynamic database , 2007 .

[13]  G. Villasenor,et al.  Structure and properties of Zn-Al-Cu alloy reinforced with alumina particles , 2003 .

[14]  James Mabe,et al.  Shape Memory Materials - I , 2013 .

[15]  M. Harmelin,et al.  Computational phase studies in commercial aluminium and magnesium alloys , 2000 .

[16]  Lianxi Zheng,et al.  Rubber-like shape memory polymeric materials with repeatable thermal-assisted healing function , 2012 .

[17]  J. Miettinen Thermodynamic description of the CuAlZn and CuSnZn systems in the copper-rich corner , 2002 .

[18]  L. Höglund,et al.  Thermo-Calc & DICTRA, computational tools for materials science , 2002 .

[19]  R. Romero,et al.  The effect of post-quench aging on stabilization of martensite in Cu–Zn–Al and Cu–Zn–Al–Ti–B shape memory alloys , 1999 .

[20]  N. Kang,et al.  Alloy design of Zn-Al-Cu solder for ultra high temperatures , 2009 .

[21]  S. Fries,et al.  The Ag–Al–Cu system: Part I: Reassessment of the constituent binaries on the basis of new experimental data , 2004 .

[22]  Sergiu Stanciu,et al.  Obtaining shape memory alloy thin layer using PLD technique , 2014 .

[23]  R. Castanet Enthalpies of formation of liquid alloys of Ge with Fe, Co, and Ni at 1288 K , 1979 .

[24]  I. Aksoy,et al.  SEM and X-Ray Diffraction Studies on Microstructures in Cu-26.04%Zn-4.01%Al Alloy , 2013 .

[25]  Julian R.H. Ross,et al.  Methanol reforming for fuel-cell applications: development of zirconia-containing Cu–Zn–Al catalysts , 1999 .

[26]  Ž. Živković,et al.  Thermodilatometry investigation of the martensitic transformation in copper-based shape memory alloys , 1997 .

[27]  R. Romero,et al.  Calorimetry in Cu–Zn–Al alloys under different structural and microstructural conditions , 2000 .

[28]  F. Huber,et al.  Comparison of Cu–Ce–Zr and Cu–Zn–Al mixed oxide catalysts for water-gas shift , 2007 .

[29]  L. Gomidželović,et al.  Investigation of the Structural, Mechanical and Electrical Properties of Cu-Al-Zn Shape Memory Alloys , 2014 .

[30]  H. Liang,et al.  A Thermodynamic Description for the Al-Cu-Zn System , 1998 .

[31]  Christoph Czaderski,et al.  Applications of shape memory alloys in civil engineering structures—Overview, limits and new ideas , 2005 .

[32]  P. Makroczy,et al.  Shape memory effect in a Cu–Zn–Al alloy with dual phase α/β microstructure , 1999 .

[33]  B. Xiong,et al.  Thermodynamic calculation of high zinc-containing Al-Zn-Mg-Cu alloy , 2014 .

[34]  Hans Leo Lukas,et al.  Computational Thermodynamics: The Calphad Method , 2007 .

[35]  P. Titov,et al.  Evolution of the shape memory parameters during multiple transformation cycles under load in Cu–Zn–Al alloys , 1999 .

[36]  I. Mihajlovic,et al.  Cu-Al-Zn system: Calculation of thermodynamic properties in liquid phase , 2013 .