Entropic CLT for Smoothed Convolutions and Associated Entropy Bounds

We explore an asymptotic behavior of entropies for sums of independent random variables that are convolved with a small continuous noise.

[1]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[2]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[3]  George Livadiotis,et al.  High Density Nodes in the Chaotic Region of 1D Discrete Maps , 2018, Entropy.

[4]  A. Barron,et al.  Fisher information inequalities and the central limit theorem , 2001, math/0111020.

[5]  Elisabeth M. Werner,et al.  Divergence for s-concave and log concave functions , 2013, 1307.5409.

[6]  Gennadiy P. Chistyakov,et al.  Rate of convergence and Edgeworth-type expansion in the entropic central limit theorem , 2011, 1104.3994.

[7]  Peng Xu,et al.  Forward and Reverse Entropy Power Inequalities in Convex Geometry , 2016, ArXiv.

[8]  Murti V. Salapaka,et al.  Error Bounds on a Mixed Entropy Inequality , 2018, International Symposium on Information Theory.

[9]  L. Miclo Notes on the Speed of Entropic Convergence in the Central Limit Theorem , 2003 .

[10]  O. Guédon,et al.  Functional Versions of Lp-Affine Surface Area and Entropy Inequalities , 2014, 1402.3250.

[11]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[12]  C. Villani Topics in Optimal Transportation , 2003 .

[13]  Jean Bourgain,et al.  ON HIGH DIMENSIONAL MAXIMAL FUNCTIONS ASSOCIATED TO CONVEX BODIES , 1986 .

[14]  Liyao Wang,et al.  Beyond the Entropy Power Inequality, via Rearrangements , 2013, IEEE Transactions on Information Theory.

[15]  Sergey G. Bobkov,et al.  Entropic approach to E. Rio’s central limit theorem for W2 transport distance , 2013 .

[16]  Sergey G. Bobkov,et al.  The Entropy Per Coordinate of a Random Vector is Highly Constrained Under Convexity Conditions , 2010, IEEE Transactions on Information Theory.

[17]  S. Bobkov,et al.  Local limit theorems for smoothed Bernoulli and other convolutions , 2019, Teoriya Veroyatnostei i ee Primeneniya.

[18]  S. Bobkov,et al.  Reverse Brunn–Minkowski and reverse entropy power inequalities for convex measures , 2011, 1109.5287.

[19]  Devavrat Shah,et al.  On entropy for mixtures of discrete and continuous variables , 2006, ArXiv.

[20]  Varun Jog,et al.  An Entropy Inequality for Symmetric Random Variables , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[21]  Mokshay Madiman,et al.  Entropy versus variance for symmetric log-concave random variables and related problems , 2018, ArXiv.

[22]  M. Talagrand Transportation cost for Gaussian and other product measures , 1996 .

[23]  Assaf Naor,et al.  On the rate of convergence in the entropic central limit theorem , 2004 .

[24]  Victoria Kostina,et al.  A Lower Bound on the Differential Entropy of Log-Concave Random Vectors with Applications , 2017, Entropy.

[25]  Peter Harremoës,et al.  Rényi Divergence and Kullback-Leibler Divergence , 2012, IEEE Transactions on Information Theory.

[26]  E. Lieb Some Convexity and Subadditivity Properties of Entropy , 1975 .

[27]  Amir Dembo,et al.  Information theoretic inequalities , 1991, IEEE Trans. Inf. Theory.

[28]  Lan V. Truong,et al.  Support Recovery in the Phase Retrieval Model: Information-Theoretic Fundamental Limit , 2019, IEEE Transactions on Information Theory.

[29]  A. Barron ENTROPY AND THE CENTRAL LIMIT THEOREM , 1986 .

[30]  Local Limit Theorems for Smoothed Bernoulli and Other Convolutions , 2020 .

[31]  Murti V. Salapaka,et al.  Relationships between certain f -divergences , 2019, 2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[32]  O. Johnson Information Theory And The Central Limit Theorem , 2004 .

[33]  Alex Zhai,et al.  The CLT in high dimensions: Quantitative bounds via martingale embedding , 2018, The Annals of Probability.

[34]  A. J. Stam Some Inequalities Satisfied by the Quantities of Information of Fisher and Shannon , 1959, Inf. Control..

[35]  Alfred O. Hero,et al.  Bounds on Variance for Unimodal Distributions , 2015, IEEE Transactions on Information Theory.