Automated Audiovisual Depression Analysis.

Analysis of observable behavior in depression primarily relies on subjective measures. New computational approaches make possible automated audiovisual measurement of behaviors that humans struggle to quantify (e.g., movement velocity and voice inflection). These tools have the potential to improve screening and diagnosis, identify new behavioral indicators of depression, measure response to clinical intervention, and test clinical theories about underlying mechanisms. Highlights include a study that measured the temporal coordination of vocal tract and facial movements, a study that predicted which adolescents would go on to develop depression based on their voice qualities, and a study that tested the behavioral predictions of clinical theories using automated measures of facial actions and head motion.

[1]  M. Pantic,et al.  AVEC 2014: the 4th international audio/visual emotion challenge and workshop , 2014, ACM Multimedia.

[2]  J. Cohn,et al.  Dyadic Behavior Analysis in Depression Severity Assessment Interviews , 2014, ICMI.

[3]  Mohammad H. Mahoor,et al.  Nonverbal social withdrawal in depression: Evidence from manual and automatic analyses , 2014, Image Vis. Comput..

[4]  Tiago H. Falk,et al.  Model Fusion for Multimodal Depression Classification and Level Detection , 2014, AVEC '14.

[5]  Tanaya Guha,et al.  Multimodal Prediction of Affective Dimensions and Depression in Human-Computer Interactions , 2014, AVEC '14.

[6]  Hugo Jair Escalante,et al.  Fusing Affective Dimensions and Audio-Visual Features from Segmented Video for Depression Recognition: INAOE-BUAP's Participation at AVEC'14 Challenge , 2014, AVEC '14.

[7]  Roland Göcke,et al.  Can body expressions contribute to automatic depression analysis? , 2013, 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG).

[8]  Roland Göcke,et al.  Relative Body Parts Movement for Automatic Depression Analysis , 2013, 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction.

[9]  F. Schmidt,et al.  Linking "big" personality traits to anxiety, depressive, and substance use disorders: a meta-analysis. , 2010, Psychological bulletin.

[10]  Nicholas B. Allen,et al.  Multichannel Weighted Speech Classification System for Prediction of Major Depression in Adolescents , 2013, IEEE Transactions on Biomedical Engineering.

[11]  Fernando De la Torre,et al.  Facing Imbalanced Data--Recommendations for the Use of Performance Metrics , 2013, 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction.

[12]  Heng Wang,et al.  Depression recognition based on dynamic facial and vocal expression features using partial least square regression , 2013, AVEC@ACM Multimedia.

[13]  Louis-Philippe Morency,et al.  Audiovisual behavior descriptors for depression assessment , 2013, ICMI '13.

[14]  Dimitra Vergyri,et al.  The SRI AVEC-2014 Evaluation System , 2014, AVEC '14.

[15]  Eliathamby Ambikairajah,et al.  Spectro-temporal analysis of speech affected by depression and psychomotor retardation , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[16]  Tamás D. Gedeon,et al.  A comparative study of different classifiers for detecting depression from spontaneous speech , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[17]  Wolfgang Minker,et al.  Emotion Recognition and Depression Diagnosis by Acoustic and Visual Features: A Multimodal Approach , 2014, AVEC '14.

[18]  Björn W. Schuller,et al.  AVEC 2013: the continuous audio/visual emotion and depression recognition challenge , 2013, AVEC@ACM Multimedia.

[19]  Louis-Philippe Morency,et al.  Automatic Nonverbal Behavior Indicators of Depression and PTSD: Exploring Gender Differences , 2013, 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction.

[20]  Janet B W Williams,et al.  Diagnostic and Statistical Manual of Mental Disorders , 2013 .

[21]  Varun Jain,et al.  Depression Estimation Using Audiovisual Features and Fisher Vector Encoding , 2014, AVEC '14.

[22]  Laszlo A. Jeni,et al.  Spontaneous facial expression in unscripted social interactions can be measured automatically , 2015, Behavior research methods.

[23]  Michael Wagner,et al.  Head Pose and Movement Analysis as an Indicator of Depression , 2013, 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction.

[24]  J. Cohn,et al.  Automated Face Analysis for Affective Computing , 2015 .

[25]  Vidhyasaharan Sethu,et al.  Probabilistic acoustic volume analysis for speech affected by depression , 2014, INTERSPEECH.

[26]  Thomas F. Quatieri,et al.  On the relative importance of vocal source, system, and prosody in human depression , 2013, 2013 IEEE International Conference on Body Sensor Networks.

[27]  Thomas F. Quatieri,et al.  Vocal and Facial Biomarkers of Depression based on Motor Incoordination and Timing , 2014, AVEC '14.

[28]  Albert A. Rizzo,et al.  Automatic audiovisual behavior descriptors for psychological disorder analysis , 2014, Image Vis. Comput..

[29]  Michael Wagner,et al.  Eye movement analysis for depression detection , 2013, 2013 IEEE International Conference on Image Processing.

[30]  Roland Göcke,et al.  Diagnosis of depression by behavioural signals: a multimodal approach , 2013, AVEC@ACM Multimedia.

[31]  Jeffrey F. Cohn,et al.  Detecting Depression Severity from Vocal Prosody , 2013, IEEE Transactions on Affective Computing.

[32]  Fan Zhang,et al.  Automatic Depression Scale Prediction using Facial Expression Dynamics and Regression , 2014, AVEC '14.

[33]  Stavros J. Perantonis,et al.  Realtime depression estimation using mid-term audio features , 2014, AI-AM/NetMed@ECAI.

[34]  Carmen García-Mateo,et al.  A study of acoustic features for the classification of depressed speech , 2014, 2014 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO).

[35]  Carmen García-Mateo,et al.  A study of acoustic features for depression detection , 2014, 2nd International Workshop on Biometrics and Forensics.

[36]  Michael Wagner,et al.  Multimodal assistive technologies for depression diagnosis and monitoring , 2013, Journal on Multimodal User Interfaces.

[37]  Thomas F. Quatieri,et al.  Vocal biomarkers of depression based on motor incoordination , 2013, AVEC@ACM Multimedia.

[38]  Thomas Serre,et al.  A Theory of Object Recognition: Computations and Circuits in the Feedforward Path of the Ventral Stream in Primate Visual Cortex , 2005 .