Parameterization for polynomial curve approximation via residual deep neural networks

Finding the optimal parameterization for fitting a given sequence of data points with a parametric curve is a challenging problem that is equivalent to solving a highly non-linear system of equations. In this work, we propose the use of a residual neural network to approximate the function that assigns to a sequence of data points a suitable parameterization for fitting a polynomial curve of a fixed degree. Our model takes as an input a small fixed number of data points and the generalization to arbitrary data sequences is obtained by performing multiple evaluations. We show that the approach compares favorably to classical methods in a number of numerical experiments that include the parameterization of polynomial as well as non-polynomial data.

[1]  Abedallah Rababah High order approximation method for curves , 1995, Comput. Aided Geom. Des..

[2]  Wenping Wang,et al.  Control point adjustment for B-spline curve approximation , 2004, Comput. Aided Des..

[3]  Gasper Jaklic,et al.  On geometric interpolation by planar parametric polynomial curves , 2007, Math. Comput..

[4]  Dongwei Chen,et al.  Deep Residual Learning for Nonlinear Regression , 2020, Entropy.

[5]  Josef Hoschek,et al.  Global reparametrization for curve approximation , 1998, Comput. Aided Geom. Des..

[6]  Jing-Jing Fang,et al.  An improved parameterization method for B-spline curve and surface interpolation , 2013, Comput. Aided Des..

[7]  E. T. Y. Lee,et al.  Choosing nodes in parametric curve interpolation , 1989 .

[8]  Francesca Pelosi,et al.  Approximation of monotone clothoid segments by degree 7 Pythagorean-hodograph curves , 2021, J. Comput. Appl. Math..

[9]  Andres Iglesias,et al.  Bat Algorithm for Curve Parameterization in Data Fitting with Polynomial Bézier Curves , 2015, 2015 International Conference on Cyberworlds (CW).

[10]  Pierre Vandergheynst,et al.  Geometric Deep Learning: Going beyond Euclidean data , 2016, IEEE Signal Process. Mag..

[11]  Choong-Gyoo Lim,et al.  A universal parametrization in B-spline curve and surface interpolation , 1999, Comput. Aided Geom. Des..

[12]  Georg Umlauf,et al.  Deep Learning Parametrization for B-Spline Curve Approximation , 2018, 2018 International Conference on 3D Vision (3DV).

[13]  Aleš Vavpetič Optimal parametric interpolants of circular arcs , 2020, Comput. Aided Geom. Des..

[14]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Choong-Gyoo Lim Universal parametrization in constructing smoothly-connected B-spline surfaces , 2002, Comput. Aided Geom. Des..

[16]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[17]  Andrés Iglesias,et al.  Four Adaptive Memetic Bat Algorithm Schemes for Bézier Curve Parameterization , 2016, Trans. Comput. Sci..

[18]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[19]  J. Koch,et al.  Geometric Hermite interpolation with maximal orderand smoothness , 1996, Comput. Aided Geom. Des..

[20]  Dongming Wang,et al.  Improving angular speed uniformity by reparameterization , 2013, Comput. Aided Geom. Des..

[21]  Eric Saux,et al.  An improved Hoschek intrinsic parametrization , 2003, Comput. Aided Geom. Des..

[22]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[23]  Helmut Pottmann,et al.  Fitting B-spline curves to point clouds by curvature-based squared distance minimization , 2006, TOGS.

[24]  M. Floater,et al.  Parameterization for Curve Interpolation , 2006 .

[25]  Michael S. Floater On the deviation of a parametric cubic spline interpolant from its data polygon , 2008, Comput. Aided Geom. Des..

[26]  Carolina Vittoria Beccari,et al.  High quality local interpolation by composite parametric surfaces , 2016, Comput. Aided Geom. Des..

[27]  Melih Kuncan,et al.  Dynamic Centripetal Parameterization Method for B-Spline Curve Interpolation , 2020, IEEE Access.

[28]  Neil A. Dodgson,et al.  Advances in Multiresolution for Geometric Modelling , 2005 .

[29]  Leonidas J. Guibas,et al.  DeepSpline: Data-Driven Reconstruction of Parametric Curves and Surfaces , 2019, ArXiv.

[30]  Elisa Bertino,et al.  Transactions on Computational Science XXXVI: Special Issue on Cyberworlds and Cybersecurity , 2020, Trans. Comput. Sci..

[31]  Josef Hoschek,et al.  Intrinsic parametrization for approximation , 1988, Comput. Aided Geom. Des..