Periodic Travelling Wave Selection by Dirichlet Boundary Conditions in Oscillatory Reaction-Diffusion Systems

Periodic travelling waves are a fundamental solution form in oscillatory reaction-diffusion equations. Here I discuss the generation of periodic travelling waves in a reaction-diffusion system of the generic $\lambda$-$\omega$ form. I present numerical results suggesting that when this system is solved on a semi-infinite domain subject to Dirichlet boundary conditions in which the variables are fixed at zero, periodic travelling waves develop in the domain. The amplitude and speed of these waves are independent of the initial conditions, which I generate randomly in numerical simulations. Using a combination of numerical and analytical methods, I investigate the mechanism of periodic travelling wave selection. By looking for an appropriate similarity solution, I reduce the problem to an ODE system. Using this, I derive a formula for the selected speed and amplitude as a function of parameters. Finally, I discuss applications of this work to ecology.

[1]  P. Hagan The Instability of Nonmonotonic Wave Solutions of Parabolic Equations , 1981 .

[2]  J A Sherratt,et al.  Generation of periodic waves by landscape features in cyclic predator–prey systems , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[3]  N. Kopell Target pattern solutions to reaction-diffusion equations in the presence of impurities , 1981 .

[4]  Alison L. Kay,et al.  On the persistence of spatiotemporal oscillations generated by invasion , 1999 .

[5]  Nancy Kopell,et al.  Target Patterns and Horseshoes from a Perturbed Central-Force Problem: Some Temporally Periodic Solutions to Reaction-Diffusion Equations , 1981 .

[6]  Sergei Petrovskii,et al.  Critical phenomena in plankton communities: KISS model revisited , 2000 .

[7]  P. Hagan,et al.  Target patterns in reaction-diffusion systems , 1981 .

[8]  Alison L. Kay,et al.  Spatial Noise Stabilizes Periodic Wave Patterns in Oscillatory Systems on Finite Domains , 2000, SIAM J. Appl. Math..

[9]  Andrew M. Liebhold,et al.  Waves of Larch Budmoth Outbreaks in the European Alps , 2002, Science.

[10]  J. Sherratt Irregular wakes in reaction-diffusion waves , 1994 .

[11]  Jonathan A. Sherratt On the Evolution of Periodic Plane Waves in Reaction-Diffusion Systems of Lambda-Omega Type , 1994, SIAM J. Appl. Math..

[12]  David A. Elston,et al.  Spatial asynchrony and periodic travelling waves in cyclic populations of field voles , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[13]  O. Bjørnstad,et al.  Spatial population dynamics: analyzing patterns and processes of population synchrony. , 1999, Trends in ecology & evolution.

[14]  Nancy Kopell,et al.  Plane Wave Solutions to Reaction‐Diffusion Equations , 1973 .

[15]  K. Maginu Stability of periodic travelling wave solutions with large spatial periods in reaction-diffusion systems , 1981 .

[16]  G. Ermentrout,et al.  Frequency Plateaus in a Chain of Weakly Coupled Oscillators, I. , 1984 .

[17]  H. M. Byrne,et al.  A two parameter family of travelling waves with a singular barrier arising from the modelling of matrix mediated malignant invasion , 1999 .

[18]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[19]  Bifurcation analysis of reaction-diffusion equations—III. Chemical oscillations , 1976 .

[20]  G. Ermentrout,et al.  On chains of oscillators forced at one end , 1991 .

[21]  David A. Elston,et al.  Scale invariant spatio-temporal patterns of field vole density , 2001 .

[22]  Sergei Petrovskii,et al.  A minimal model of pattern formation in a prey-predator system , 1999 .

[23]  James Sneyd,et al.  On the Propagation of Calcium Waves in an Inhomogeneous Medium , 1997, SIAM J. Appl. Math..

[24]  Grégoire Nicolis,et al.  Bifurcation analysis of reaction-diffusion equations—III. Chemical oscillations , 1976 .

[25]  Stephen A. Gourley,et al.  Travelling fronts for the KPP equation with spatio-temporal delay , 2002 .

[26]  J Norbury,et al.  Lotka-Volterra equations with chemotaxis: walls, barriers and travelling waves. , 2000, IMA journal of mathematics applied in medicine and biology.

[27]  M A Lewis,et al.  Ecological chaos in the wake of invasion. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[28]  A. Winfree The geometry of biological time , 1991 .

[29]  G. Bard Ermentrout,et al.  Transition fronts and localized structures in bistable reaction-diffusion equations , 1997 .

[30]  G. Bard Ermentrout,et al.  Monotonicity of phaselocked solutions in chains and arrays of nearest-neighbor coupled oscillators , 1998 .

[31]  P. Giraudoux Population dynamics of fossorial water vole (Arvicola terrestris scherman): a land use and landscape perspective , 1997 .

[32]  On the nonlinear stability of plane waves for the ginzburg‐landau equation , 1994 .

[33]  David A. Elston,et al.  SPATIAL ASYNCHRONY AND DEMOGRAPHIC TRAVELING WAVES DURING RED GROUSE POPULATION CYCLES , 2000 .

[34]  G. Ermentrout,et al.  Symmetry and phaselocking in chains of weakly coupled oscillators , 1986 .

[35]  H. Nagashima Target Patterns and Pacemakers in a Reaction-Diffusion System , 1991 .

[36]  G. Bard Ermentrout,et al.  Stable small-amplitude solutions in reaction-diffusion systems , 1981 .