Constructions of Locally Repairable Codes With Multiple Recovering Sets via Rational Function Fields

Locally repairable codes with more than one recovering set are demanded in the application to distributed storage. For each failure node (or disk), it is desired to have as many recovering sets as possible. In this paper, we make use of automorphisms of rational function fields to construct locally repairable codes with multiple recovering sets. Although we focus on two recovering sets, our construction can be easily generalized to the case of multiple recovering sets. In particular, we obtain a class of locally repairable codes with minimum distance only 1 less than the upper bound.

[1]  H. Niederreiter,et al.  Rational Points on Curves Over Finite Fields: Theory and Applications , 2001 .

[2]  W. Rossmann Lie Groups: An Introduction through Linear Groups , 2002 .

[3]  Cheng Huang,et al.  On the Locality of Codeword Symbols , 2011, IEEE Transactions on Information Theory.

[4]  Sriram Vishwanath,et al.  Optimal locally repairable codes via rank-metric codes , 2013, 2013 IEEE International Symposium on Information Theory.

[5]  Chaoping Xing,et al.  Construction of Asymptotically Good Locally Repairable Codes via Automorphism Groups of Function Fields , 2017, IEEE Transactions on Information Theory.

[6]  Zhifang Zhang,et al.  Repair Locality With Multiple Erasure Tolerance , 2014, IEEE Transactions on Information Theory.

[7]  P. Vijay Kumar,et al.  Optimal linear codes with a local-error-correction property , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[8]  D. Skabelund New maximal curves as ray class fields over Deligne-Lusztig curves , 2016, 1605.05428.

[9]  Itzhak Tamo,et al.  Locally Recoverable Codes on Algebraic Curves , 2017, IEEE Transactions on Information Theory.

[10]  Chaoping Xing,et al.  Optimal Locally Repairable Codes Via Elliptic Curves , 2017, IEEE Transactions on Information Theory.

[11]  Chaoping Xing,et al.  Construction of Optimal Locally Repairable Codes via Automorphism Groups of Rational Function Fields , 2020, IEEE Transactions on Information Theory.

[12]  C. Chevalley,et al.  Introduction to the theory of algebraic functions of one variable , 1951 .

[13]  Gábor Korchmáros,et al.  A new family of maximal curves over a finite field , 2007, 0711.0445.

[14]  Arya Mazumdar,et al.  An upper bound on the size of locally recoverable codes , 2013, 2013 International Symposium on Network Coding (NetCod).

[15]  Gretchen L. Matthews,et al.  Locally Recoverable Codes with Availability t≥2 from Fiber Products of Curves , 2016, Adv. Math. Commun..

[16]  Dimitris S. Papailiopoulos,et al.  Locally Repairable Codes , 2014, IEEE Trans. Inf. Theory.

[17]  Minghua Chen,et al.  Pyramid Codes: Flexible Schemes to Trade Space for Access Efficiency in Reliable Data Storage Systems , 2007, Sixth IEEE International Symposium on Network Computing and Applications (NCA 2007).

[18]  Itzhak Tamo,et al.  A Family of Optimal Locally Recoverable Codes , 2013, IEEE Transactions on Information Theory.

[19]  Luis Alfonso Lastras-Montaño,et al.  Reliable Memories with Subline Accesses , 2007, 2007 IEEE International Symposium on Information Theory.

[20]  J. Schur Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen. , 1907 .

[21]  Hans Zassenhaus,et al.  Kennzeichnung endlicher linearer Gruppen als Permutationsgruppen , 1935 .

[22]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[23]  Julie De Saedeleer,et al.  On the rank two geometries of the groups PSL(2, q): part I , 2010, Ars Math. Contemp..

[24]  Sergey Yekhanin,et al.  Locally Decodable Codes , 2012, Found. Trends Theor. Comput. Sci..

[25]  Itzhak Tamo,et al.  Bounds on the Parameters of Locally Recoverable Codes , 2015, IEEE Transactions on Information Theory.

[26]  Dimitris S. Papailiopoulos,et al.  Optimal locally repairable codes and connections to matroid theory , 2013, 2013 IEEE International Symposium on Information Theory.

[27]  Peter Beelen,et al.  A new family of maximal curves , 2017, J. Lond. Math. Soc..

[28]  Sergey Yekhanin,et al.  On the locality of codeword symbols in non-linear codes , 2013, Discret. Math..

[29]  Zhifang Zhang,et al.  An Integer Programming-Based Bound for Locally Repairable Codes , 2014, IEEE Transactions on Information Theory.