Approximating local properties by tensor network states with constant bond dimension

Suppose we would like to approximate all local properties of a quantum many-body state to accuracy $\delta$. In one dimension, we prove that an area law for the Renyi entanglement entropy $R_\alpha$ with index $\alpha<1$ implies a matrix product state representation with bond dimension $\mathrm{poly}(1/\delta)$. For (at most constant-fold degenerate) ground states of one-dimensional gapped Hamiltonians, it suffices that the bond dimension is almost linear in $1/\delta$. In two dimensions, an area law for $R_\alpha(\alpha<1)$ implies a projected entangled pair state representation with bond dimension $e^{O(1/\delta)}$. In the presence of logarithmic corrections to the area law, similar results are obtained in both one and two dimensions.

[1]  Michael Zwolak,et al.  Mixed-state dynamics in one-dimensional quantum lattice systems: a time-dependent superoperator renormalization algorithm. , 2004, Physical review letters.

[2]  F. Verstraete,et al.  Renormalization algorithms for Quantum-Many Body Systems in two and higher dimensions , 2004, cond-mat/0407066.

[3]  Yichen Huang,et al.  A simple efficient algorithm in frustration-free one-dimensional gapped systems , 2015, 1510.01303.

[4]  Umesh Vazirani,et al.  Rigorous RG Algorithms and Area Laws for Low Energy Eigenstates in 1D , 2016, Communications in Mathematical Physics.

[5]  M. Hastings,et al.  An area law for one-dimensional quantum systems , 2007, 0705.2024.

[6]  Michael M Wolf Violation of the entropic area law for fermions. , 2006, Physical review letters.

[7]  Yichen Huang,et al.  Classical simulation of quantum many-body systems , 2015 .

[8]  G. Vidal,et al.  Entanglement in quantum critical phenomena. , 2002, Physical review letters.

[9]  Jens Eisert,et al.  Area laws and efficient descriptions of quantum many-body states , 2014, 1411.2995.

[10]  F. Wilczek,et al.  Geometric and renormalized entropy in conformal field theory , 1994, hep-th/9403108.

[11]  J. Eisert,et al.  Area laws for the entanglement entropy - a review , 2008, 0808.3773.

[12]  José Ignacio Latorre,et al.  Ground state entanglement in quantum spin chains , 2004, Quantum Inf. Comput..

[13]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[14]  Norbert Schuch,et al.  Entropy scaling and simulability by matrix product states. , 2007, Physical review letters.

[15]  Dimitri Gioev,et al.  Entanglement entropy of fermions in any dimension and the Widom conjecture. , 2006, Physical review letters.

[16]  Yichen Huang,et al.  Area law in one dimension: Degenerate ground states and Renyi entanglement entropy , 2014, 1403.0327.

[17]  J. Cardy,et al.  Entanglement entropy and conformal field theory , 2009, 0905.4013.

[18]  J Eisert,et al.  Matrix-product operators and states: NP-hardness and undecidability. , 2014, Physical review letters.

[19]  Seung Woo Shin,et al.  Quantum Hamiltonian Complexity , 2014, Found. Trends Theor. Comput. Sci..

[20]  White,et al.  Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.

[21]  Yichen Huang Computing energy density in one dimension , 2015, 1505.00772.

[22]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[23]  J. Cardy,et al.  Entanglement entropy and quantum field theory , 2004, hep-th/0405152.

[24]  Frank Verstraete,et al.  Matrix product state representations , 2006, Quantum Inf. Comput..

[25]  J I Cirac,et al.  Classical simulation of infinite-size quantum lattice systems in two spatial dimensions. , 2008, Physical review letters.

[26]  T. Osborne Hamiltonian complexity , 2011, Reports on progress in physics. Physical Society.

[27]  U. Vazirani,et al.  A polynomial time algorithm for the ground state of one-dimensional gapped local Hamiltonians , 2015, Nature Physics.

[28]  Umesh Vazirani,et al.  An area law and sub-exponential algorithm for 1D systems , 2013, 1301.1162.

[29]  F. Verstraete,et al.  Matrix product density operators: simulation of finite-temperature and dissipative systems. , 2004, Physical review letters.

[30]  Christopher T. Chubb,et al.  Computing the Degenerate Ground Space of Gapped Spin Chains in Polynomial Time , 2015, Chic. J. Theor. Comput. Sci..

[31]  M. Fannes,et al.  Finitely correlated states on quantum spin chains , 1992 .

[32]  I. McCulloch Infinite size density matrix renormalization group, revisited , 2008, 0804.2509.

[33]  Yichen Huang,et al.  2D Local Hamiltonian with Area Laws Is QMA-Complete , 2014, 2020 IEEE International Symposium on Information Theory (ISIT).

[34]  F. Verstraete,et al.  Matrix product states represent ground states faithfully , 2005, cond-mat/0505140.

[35]  J. Eisert,et al.  Colloquium: Area laws for the entanglement entropy , 2010 .

[36]  Yichen Huang,et al.  A polynomial-time algorithm for the ground state of one-dimensional gapped Hamiltonians , 2014, ArXiv.

[37]  G Vidal Classical simulation of infinite-size quantum lattice systems in one spatial dimension. , 2007, Physical review letters.