Optimal Control of Objects on the Micro- and Nano-Scale by Electrokinetic and Electromagnetic Manipulation: for Bio-Sample Preparation, Quantum Information Devices and Magnetic Drug Delivery

Abstract : In this thesis I show achievements for precision feedback control of objects inside micro-fluidic systems and for magnetically guided ferrofluids. Essentially, this is about doing flow control, but flow control on the microscale, and further even to nanoscale accuracy, to precisely and robustly manipulate micro and nano-objects (i.e. cells and quantum dots). Target applications include methods to miniaturize the operations of a biological laboratory (lab-on-a-chip), i.e. presenting pathogens to on-chip sensing cells or extracting cells from messy bio-samples such as saliva, urine, or blood; as well as non-biological applications such as deterministically placing quantum dots on photonic crystals to make multi-dot quantum information systems. The particles are steered by creating an electrokinetic fluid flow that carries all the particles from where they are to where they should be at each time step. The control loop comprises sensing, computation, and actuation to steer particles along trajectories. Particle locations are identified in real-time by an optical system and transferred to a control algorithm that then determines the electrode voltages necessary to create a flow field to carry all the particles to their next desired locations. The process repeats at the next time instant. I address following aspects of this technology. First I explain control and vision algorithms for steering single and multiple particles, and show extensions of these algorithms for steering in three dimensional (3D\) spaces. Then I show algorithms for calculating power minimum paths for steering multiple particles in actuation constrained environments. With this microfluidic system I steer biological cells and nano particles \201quantum dots\202 to nano meter precision.

[1]  Gary Friedman,et al.  An approach to targeted drug delivery based on uniform magnetic fields , 2003 .

[2]  R. Piestun,et al.  Three dimensional tracking of fluorescent microparticles using a photon-limited double-helix response system. , 2008, Optics express.

[3]  Eric P. Y. Chiou,et al.  EWOD-driven droplet microfluidic device integrated with optoelectronic tweezers as an automated platform for cellular isolation and analysis. , 2009, Lab on a chip.

[4]  Norval J. C. Strachan,et al.  Modelling magnetic carrier particle targeting in the tumor microvasculature for cancer treatment , 2005 .

[5]  K Bergman,et al.  Characterization of photodamage to Escherichia coli in optical traps. , 1999, Biophysical journal.

[6]  W. Moerner,et al.  Controlling Brownian motion of single protein molecules and single fluorophores in aqueous buffer. , 2008, Optics express.

[7]  Kishan Dholakia,et al.  Optical manipulation of nanoparticles: a review , 2008 .

[8]  S. Martel,et al.  Flagellated bacterial nanorobots for medical interventions in the human body , 2008, 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics.

[9]  Armin D. Ebner,et al.  Theoretical analysis of a transdermal ferromagnetic implant for retention of magnetic drug carrier particles , 2005 .

[10]  R. Probstein Physicochemical Hydrodynamics: An Introduction , 1989 .

[11]  Dganit Danino,et al.  Wormlike micelles of a C22-tailed zwitterionic betaine surfactant: from viscoelastic solutions to elastic gels. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[12]  J. Santiago Electroosmotic flows in microchannels with finite inertial and pressure forces. , 2001, Analytical chemistry.

[13]  Johannes S Kanger,et al.  UvA-DARE ( Digital Academic Repository ) Micro magnetic tweezers for nanomanipulation inside live cells , 2005 .

[14]  Jin-Ming Lin,et al.  Controlled photopolymerization of hydrogel microstructures inside microchannels for bioassays. , 2009, Lab on a chip.

[15]  W. E. Moerner,et al.  Method for trapping and manipulating nanoscale objects in solution , 2005 .

[16]  Teruo Fujii,et al.  Cell Culture in 3-Dimensional Microfluidic Structure of PDMS (polydimethylsiloxane) , 2003 .

[17]  A. Zubareva,et al.  Rheological properties of dense ferrofluids . Effect of chain-like aggregates , 2002 .

[18]  D. J. Harrison,et al.  Electroosmotic pumping and electrophoretic separations for miniaturized chemical analysis systems , 1994 .

[19]  J. Wu,et al.  Acoustical tweezers. , 1991, The Journal of the Acoustical Society of America.

[20]  W. Moerner,et al.  Suppressing Brownian motion of individual biomolecules in solution. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[21]  J. Humm,et al.  Effective targeting of magnetic radioactive 90Y-microspheres to tumor cells by an externally applied magnetic field. Preliminary in vitro and in vivo results. , 1995, Nuclear medicine and biology.

[22]  K. Neuman,et al.  Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy , 2008, Nature Methods.

[23]  Andrew C. Richardson,et al.  Three-dimensional optical control of individual quantum dots. , 2008, Nano letters.

[24]  C. Alexiou,et al.  A High Field Gradient Magnet for Magnetic Drug Targeting , 2006, IEEE Transactions on Applied Superconductivity.

[25]  Limu Wang,et al.  A simple method for fabricating multi-layer PDMS structures for 3D microfluidic chips. , 2010, Lab on a chip.

[26]  Kevin Wise Control in an Information Rich World , 2001 .

[27]  Hywel Morgan,et al.  Large-area travelling-wave dielectrophoresis particle separator , 1997 .

[28]  David J. Beebe,et al.  Insect Cell Culture in Microfluidic Channels , 2002 .

[29]  Paul Levi,et al.  Cooperative Multi-Robot Path Planning by Heuristic Priority Adjustment , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[30]  Computation and visualization of magnetic fields , 2006 .

[31]  F.M. Creighton,et al.  Optimal Distribution of Magnetic Material for Catheter and Guidewire Cardiology Therapies , 2006, INTERMAG 2006 - IEEE International Magnetics Conference.

[32]  W. Webb,et al.  Precise nanometer localization analysis for individual fluorescent probes. , 2002, Biophysical journal.

[33]  R. Engel-Herbert,et al.  Calculation of the magnetic stray field of a uniaxial magnetic domain , 2005 .

[34]  Pierre M. Petroff,et al.  Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes , 2005, Science.

[35]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[36]  Harlan K. Jones,et al.  Separations of chemically different particles by capillary electrophoresis , 1990 .

[37]  U. Zimmermann,et al.  Electrical breakdown, electropermeabilization and electrofusion. , 1986, Reviews of physiology, biochemistry and pharmacology.

[38]  Dominik P. J. Barz,et al.  Model and verification of electrokinetic flow and transport in a micro-electrophoresis device. , 2005, Lab on a chip.

[39]  R. Probst,et al.  Using feedback control and micro-fluidics to steer individual particles , 2005, 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005. MEMS 2005..

[40]  P Reichardt,et al.  Clinical experiences with magnetic drug targeting: a phase I study with 4'-epidoxorubicin in 14 patients with advanced solid tumors. , 1996, Cancer research.

[41]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[42]  Armin D. Ebner,et al.  Magnetizable implants and functionalized magnetic carriers: A novel approach for noninvasive yet targeted drug delivery , 2005 .

[43]  U. Ryan,et al.  Surface charge of endothelial cells estimated from electrophoretic mobility. , 1989, Membrane biochemistry.

[44]  Shawn W. Walker,et al.  A control method for steering individual particles inside liquid droplets actuated by electrowetting. , 2005, Lab on a chip.

[45]  Eric H. Maslen,et al.  Optimal realization of arbitrary forces in a magnetic stereotaxis system , 1996 .

[46]  N. Jeon,et al.  Microfluidic culture platform for neuroscience research , 2006, Nature Protocols.

[47]  Andrew J. Pullan,et al.  An Anatomically Based Model of Transient Coronary Blood Flow in the Heart , 2002, SIAM J. Appl. Math..

[48]  D E Ingber,et al.  Analysis of cell mechanics in single vinculin-deficient cells using a magnetic tweezer. , 2000, Biochemical and biophysical research communications.

[49]  S. Martel,et al.  Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system , 2007 .

[50]  Arto Nurmikko,et al.  Large ordered arrays of single photon sources based on II-VI semiconductor colloidal quantum dot. , 2008, Optics express.

[51]  R S Weiner,et al.  Electrophoretic distributions of human peripheral blood mononuclear white cells from normal subjects and from patients with acute lymphocytic leukemia. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Qianwang Chen,et al.  Magnetic field-assisted hydrothermal growth of chain-like nanostructure of magnetite , 2005 .

[53]  Charlie Gosse,et al.  Magnetic tweezers: micromanipulation and force measurement at the molecular level. , 2002, Biophysical journal.

[54]  N. Nguyen,et al.  Visualizing the transient electroosmotic flow and measuring the zeta potential of microchannels with a micro-PIV technique. , 2006, The Journal of chemical physics.

[55]  R. McCormick,et al.  Separation and Isolation of Viable Bacteria by Capillary Zone Electrophoresis , 1993, Nature Biotechnology.

[56]  Kishan Dholakia,et al.  Construction and calibration of an optical trap on a fluorescence optical microscope , 2007, Nature Protocols.

[57]  D. Grier A revolution in optical manipulation , 2003, Nature.

[58]  Dirk Englund,et al.  Controlling cavity reflectivity with a single quantum dot , 2007, Nature.

[59]  Shawn W. Walker,et al.  Electrowetting with contact line pinning: Computational modeling and comparisons with experiments , 2009 .

[60]  Sylvain Martel,et al.  Real-Time MRI-Based Control of a Ferromagnetic Core for Endovascular Navigation , 2008, IEEE Transactions on Biomedical Engineering.

[61]  K. Widder,et al.  Tumor remission in Yoshida sarcoma-bearing rts by selective targeting of magnetic albumin microspheres containing doxorubicin. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Y. Takamura,et al.  Low‐voltage electroosmosis pump for stand‐alone microfluidics devices , 2003, Electrophoresis.

[63]  Y.A. Chapuis,et al.  A MEMS array for pneumatic conveyor and its control based on distributed system , 2005, 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005. MEMS 2005..

[64]  S. Fatikow,et al.  Control system for the automatic handling of biological cells with mobile microrobots , 2004, Proceedings of the 2004 American Control Conference.

[65]  Mark Wilson,et al.  Hepatocellular carcinoma: regional therapy with a magnetic targeted carrier bound to doxorubicin in a dual MR imaging/ conventional angiography suite--initial experience with four patients. , 2004, Radiology.

[66]  P. C. Hiemenz,et al.  Principles of colloid and surface chemistry , 1977 .

[67]  A. Abdel-azim Fundamentals of Heat and Mass Transfer , 2011 .

[68]  Sylvain Martel,et al.  Flagellated Magnetotactic Bacteria as Controlled MRI-trackable Propulsion and Steering Systems for Medical Nanorobots Operating in the Human Microvasculature , 2009, Int. J. Robotics Res..

[69]  B. Shapiro Towards dynamic control of magnetic fields to focus magnetic carriers to targets deep inside the body. , 2009, Journal of magnetism and magnetic materials.

[70]  M. Lipson,et al.  Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides , 2009, Nature.

[71]  Iulia M Lazar,et al.  Multiple open-channel electroosmotic pumping system for microfluidic sample handling. , 2002, Analytical chemistry.

[72]  L. Locascio,et al.  Measurement of electroosmotic flow in plastic imprinted microfluid devices and the effect of protein adsorption on flow rate. , 1999, Journal of chromatography. A.

[73]  Kenneth A. Barbee,et al.  Targeted drug delivery to magnetic implants for therapeutic applications , 2005 .

[74]  Mariana Henriques,et al.  Expression of a Fungal Hydrophobin in the Saccharomyces cerevisiae Cell Wall: Effect on Cell Surface Properties and Immobilization , 2002, Applied and Environmental Microbiology.

[75]  Jeonghoon Yoo,et al.  Design of a Halbach Magnet Array Based on Optimization Techniques , 2008, IEEE Transactions on Magnetics.

[76]  Jie Yan,et al.  Near-field-magnetic-tweezer manipulation of single DNA molecules. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[77]  P. Venkataraman,et al.  Applied Optimization with MATLAB Programming , 2001 .

[78]  C Alexiou,et al.  Clinical applications of magnetic drug targeting. , 2001, The Journal of surgical research.

[79]  R. Leighton,et al.  Feynman Lectures on Physics , 1971 .

[80]  Edo Waks,et al.  Dipole induced transparency in drop-filter cavity-waveguide systems. , 2006, Physical review letters.

[81]  Nynke H Dekker,et al.  Quantitative modeling and optimization of magnetic tweezers. , 2009, Biophysical journal.

[82]  Dieter Blaas,et al.  Capillary electrophoresis of biological particles: Viruses, bacteria, and eukaryotic cells , 2004, Electrophoresis.

[83]  X. Xia,et al.  Time-dependent starting profile of velocity upon application of external electrical potential in electroosmotic driven microchannels , 2006 .

[84]  Purnendu K. Dasgupta,et al.  Electroosmosis: A reliable fluid propulsion system for flow injection analysis , 1994 .

[85]  C. Henry,et al.  Dynamic coating using polyelectrolyte multilayers for chemical control of electroosmotic flow in capillary electrophoresis microchips. , 2000, Analytical chemistry.

[86]  G. Whitesides,et al.  Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). , 1998, Analytical chemistry.

[87]  J. Baygents,et al.  Capillary Electrophoresis Measurements of Electrophoretic Mobility for Colloidal Particles of Biological Interest , 1998, Applied and Environmental Microbiology.

[88]  Adam E Cohen,et al.  Control of nanoparticles with arbitrary two-dimensional force fields. , 2005, Physical review letters.

[89]  Stefan Odenbach,et al.  Magnetoviscous effects in ferrofluids , 2002 .

[90]  N. Chronis,et al.  Electrothermally activated SU-8 microgripper for single cell manipulation in solution , 2005, Journal of Microelectromechanical Systems.

[91]  Juan G. Santiago,et al.  A review of micropumps , 2004 .

[92]  Hakho Lee,et al.  Magnetic and Electric Manipulation of a Single Cell in Fluid , 2004 .

[93]  Jennifer E. Curtis,et al.  Dynamic holographic optical tweezers , 2002 .

[94]  A. Ivanov,et al.  Ferrofluid aggregation in chains under the influence of a magnetic field. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[95]  Michael P Hughes,et al.  Strategies for dielectrophoretic separation in laboratory‐on‐a‐chip systems , 2002, Electrophoresis.

[96]  Giovanni De Gasperis,et al.  Trapping of micrometre and sub-micrometre particles by high-frequency electric fields and hydrodynamic forces , 1996 .

[97]  M W Berns,et al.  Effects of ultraviolet exposure and near infrared laser tweezers on human spermatozoa. , 1996, Human reproduction.

[98]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[99]  M.D. Armani,et al.  Using feedback control of microflows to independently steer multiple particles , 2006, Journal of Microelectromechanical Systems.

[100]  H. M. Hertza Standing-wave acoustic trap for nonintrusive positioning of microparticles , 1999 .

[101]  Declan A. Diver,et al.  Dynamics of freely-suspended drops , 2001 .

[102]  Sylvain Martel,et al.  Method of propulsion of a ferromagnetic core in the cardiovascular system through magnetic gradients generated by an MRI system , 2006, IEEE Transactions on Biomedical Engineering.

[103]  C. Holm,et al.  Structure and magnetic properties of polydisperse ferrofluids: a molecular dynamics study. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[104]  Bernard Yurke,et al.  A magnetic manipulator for studying local rheology and micromechanical properties of biological systems , 1996 .

[105]  Karoly Jakab,et al.  Magnetic tweezers for intracellular applications , 2003 .

[106]  G. Whitesides,et al.  Soft Lithography. , 1998, Angewandte Chemie.

[107]  Bradley J. Nelson,et al.  Modeling and Control of Untethered Biomicrorobots in a Fluidic Environment Using Electromagnetic Fields , 2006, Int. J. Robotics Res..

[108]  S. Goodwin,et al.  Single-dose toxicity study of hepatic intra-arterial infusion of doxorubicin coupled to a novel magnetically targeted drug carrier. , 2001, Toxicological sciences : an official journal of the Society of Toxicology.

[109]  D. Huhn,et al.  Preclinical experiences with magnetic drug targeting: tolerance and efficacy. , 1996, Cancer research.

[110]  S. Raghavan,et al.  Thermothickening in solutions of telechelic associating polymers and cyclodextrins. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[111]  M. Gaitan,et al.  Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye. , 2001, Analytical chemistry.

[112]  Urs O. Häfeli,et al.  Scientific and clinical applications of magnetic carriers , 1997 .

[113]  A. Capitano,et al.  Size-dependent mobile surface charge model of cell electrophoresis. , 2005, Biophysical chemistry.

[114]  Hsan-Yin Hsu,et al.  Parallel single-cell light-induced electroporation and dielectrophoretic manipulation. , 2009, Lab on a chip.

[115]  Gregory Timp,et al.  Optimal optical trap for bacterial viability. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[116]  Changfeng Wu,et al.  Nanoscale 3D tracking with conjugated polymer nanoparticles. , 2009, Journal of the American Chemical Society.

[117]  T. Murakami,et al.  Targeted delivery of anticancer drugs with intravenously administered magnetic liposomes in osteosarcoma-bearing hamsters. , 2000, International journal of oncology.

[118]  D. E. Chang,et al.  A single-photon transistor using nanoscale surface plasmons , 2007, 0706.4335.

[119]  Bahman Anvari,et al.  Combining optical tweezers and patch clamp for studies of cell membrane electromechanics. , 2004, The Review of scientific instruments.

[120]  Kim R. Fox,et al.  Electrophoretic Mobilities of Escherichia coli O157:H7 and Wild-Type Escherichia coliStrains , 1999, Applied and Environmental Microbiology.

[121]  Carl K. Hoh,et al.  Targeting and retention of magnetic targeted carriers (MTCs) enhancing intra-arterial chemotherapy , 1999 .

[122]  M.C. Wu,et al.  Light-Actuated AC Electroosmosis for Nanoparticle Manipulation , 2008, Journal of Microelectromechanical Systems.

[123]  Benjamin Shapiro,et al.  Arbitrary steering of multiple particles independently in an electro-osmotically driven microfluidic system , 2006, IEEE Transactions on Control Systems Technology.

[124]  K. Shung,et al.  Effect of ultrasonic attenuation on the feasibility of acoustic tweezers. , 2006, Ultrasound in medicine & biology.

[125]  I. Rodríguez,et al.  Experimental study and numerical estimation of current changes in electroosmotically pumped microfluidic devices , 2005, Electrophoresis.

[126]  T. Murakami,et al.  Targeted gene delivery to human osteosarcoma cells with magnetic cationic liposomes under a magnetic field. , 2003, International journal of oncology.

[127]  R. Felix,et al.  MRI after magnetic drug targeting in patients with advanced solid malignant tumors , 2004, European Radiology.

[128]  A. Ashkin,et al.  Optical trapping and manipulation of single cells using infrared laser beams , 1987, Nature.

[129]  B. Spivakov,et al.  Separation of unmodified polystyrene nanosphere standards by capillary zone electrophoresis. , 2000, Journal of chromatography. A.

[130]  Gregory Fridman,et al.  Validation of High Gradient Magnetic Field Based Drug Delivery to Magnetizable Implants Under Flow , 2008, IEEE Transactions on Biomedical Engineering.

[131]  E O Pettersen,et al.  Cell adhesion force microscopy. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[132]  J. Weaver,et al.  Theory of electroporation: A review , 1996 .

[133]  Jason K. King,et al.  Microfluidic device for the electrokinetic manipulation of single molecules , 2009 .

[134]  R. M. Westervelt,et al.  Dielectrophoresis tweezers for single cell manipulation , 2006, Biomedical microdevices.

[135]  Bradley J. Nelson,et al.  Analysis and design of wireless magnetically guided microrobots in body fluids , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[136]  S. Gulde,et al.  Quantum nature of a strongly coupled single quantum dot–cavity system , 2007, Nature.

[137]  J. Hoogenboom,et al.  Patterning surfaces with colloidal particles using optical tweezers , 2002 .

[138]  D. J. Harrison,et al.  Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical Analysis System on a Chip , 1993, Science.

[139]  D. Beebe,et al.  Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer , 2000, Journal of Microelectromechanical Systems.

[140]  Gary Friedman,et al.  Magnetic targeting for site-specific drug delivery: applications and clinical potential. , 2009, Expert opinion on drug delivery.

[141]  D. Fleisch A student's guide to Maxwell's equations , 2008 .

[142]  Ronald Pethig,et al.  Enhancing traveling-wave dielectrophoresis with signal superposition. , 2003, IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society.

[143]  Johann Bauer,et al.  Electrophoresis of cells and the biological relevance of surface charge , 2002, Electrophoresis.

[144]  A. Ashkin,et al.  History of optical trapping and manipulation of small-neutral particle, atoms, and molecules , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[145]  G. Whitesides,et al.  Fabrication of microfluidic systems in poly(dimethylsiloxane) , 2000, Electrophoresis.

[146]  Menachem Elimelech,et al.  Effect of Electrolyte Type on the Electrophoretic Mobility of Polystyrene Latex Colloids , 1990 .

[147]  Declan A. Diver,et al.  Control to concentrate drug-coated magnetic particles to deep-tissue tumors for targeted cancer chemotherapy , 2007, 2007 46th IEEE Conference on Decision and Control.

[148]  Ming C. Wu,et al.  Massively parallel manipulation of single cells and microparticles using optical images , 2005, Nature.

[149]  Vinod Subramaniam,et al.  Intracellular manipulation of chromatin using magnetic nanoparticles , 2008, Chromosome Research.

[150]  Peter Michler,et al.  Quantum correlation among photons from a single quantum dot at room temperature , 2000, Nature.

[151]  Kuo-Kang Liu,et al.  Optical tweezers for single cells , 2008, Journal of The Royal Society Interface.

[152]  D. R. Morrison,et al.  Cellular electrophoretic mobility data: A first approach to a database , 1997, Electrophoresis.

[153]  U. Häfeli,et al.  Magnetizable needles and wires--modeling an efficient way to target magnetic microspheres in vivo. , 2004, Biorheology.

[154]  Sylvain Martel,et al.  In vivo validation of a propulsion method for untethered medical microrobots using a clinical magnetic resonance imaging system , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[155]  Albert Folch,et al.  Long-term microfluidic cultures of myotube microarrays for high-throughput focal stimulation , 2006, Nature Protocols.

[156]  Michael P. Sheetz,et al.  Laser tweezers in cell biology , 1998 .

[157]  Sakari Kulmala,et al.  Electrokinetic characterization of poly(dimethylsiloxane) microchannels , 2003, Electrophoresis.

[158]  Hywel Morgan,et al.  Negative DEP traps for single cell immobilisation. , 2009, Lab on a chip.

[159]  M. Lukin,et al.  Generation of single optical plasmons in metallic nanowires coupled to quantum dots , 2007, Nature.

[160]  Hideo Mabuchi,et al.  Feedback localization of freely diffusing fluorescent particles near the optical shot-noise limit. , 2007, Optics letters.

[161]  Samuel J. Lord,et al.  Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function , 2009, Proceedings of the National Academy of Sciences.

[162]  Edo Waks,et al.  Manipulating quantum dots to nanometer precision by control of flow. , 2010, Nano letters.

[163]  Mattias Goksör,et al.  Automated focusing of nuclei for time lapse experiments on single cells using holographic optical tweezers. , 2009, Optics express.