A stochastic programming approach to multicriteria portfolio optimization

We study a stochastic programming approach to multicriteria multi-period portfolio optimization problem. We use a Single Index Model to estimate the returns of stocks from a market-representative index and a random walk model to generate scenarios on the possible values of the index return. We consider expected return, Conditional Value at Risk and liquidity as our criteria. With stocks from Istanbul Stock Exchange, we make computational studies for the two and three-criteria cases. We demonstrate the tradeoffs between criteria and show that treating these criteria simultaneously yields meaningful efficient solutions. We provide insights based on our experiments.

[1]  Hyun-Jung Ryoo,et al.  Variance ratio tests of the random walk hypothesis for European emerging stock markets , 2003 .

[2]  A. Mustafa,et al.  Portfolio Selection Problem with Maximum Downside Deviation Measure : A Stochastic Programming Approach , 2022 .

[3]  Kin Keung Lai,et al.  A Dynamic Stochastic Programming Model for Bond Portfolio Management , 2004, International Conference on Computational Science.

[4]  Fouad Ben Abdelaziz,et al.  Multi-objective stochastic programming for portfolio selection , 2007, Eur. J. Oper. Res..

[5]  Kathrin Klamroth,et al.  An MCDM approach to portfolio optimization , 2004, Eur. J. Oper. Res..

[6]  Mustafa Ç. Pinar,et al.  Robust scenario optimization based on downside-risk measure for multi-period portfolio selection , 2007, OR Spectr..

[7]  Jitka Dupacová,et al.  Scenarios for Multistage Stochastic Programs , 2000, Ann. Oper. Res..

[8]  H. Konno,et al.  Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market , 1991 .

[9]  B. Brorsen,et al.  Testing weak-form market efficiency: Evidence from the Istanbul Stock Exchange , 2003 .

[10]  M. Ehrgott,et al.  Computing Nadir Values in Three Objectives , 2001 .

[11]  Yazid M. Sharaiha,et al.  Heuristics for cardinality constrained portfolio optimisation , 2000, Comput. Oper. Res..

[12]  V. Akgiray,et al.  The statistical evolution of prices on the Istanbul stock exchange , 2004 .

[13]  R. Rockafellar,et al.  Conditional Value-at-Risk for General Loss Distributions , 2001 .

[14]  Abdourahmane Sarr,et al.  Measuring Liquidity in Financial Markets , 2002 .

[15]  E. Fama,et al.  Common risk factors in the returns on stocks and bonds , 1993 .

[16]  Hiroshi Konno,et al.  PIECEWISE LINEAR RISK FUNCTION AND PORTFOLIO OPTIMIZATION , 1990 .

[17]  Dimitris Bertsimas,et al.  Portfolio Construction Through Mixed-Integer Programming at Grantham, Mayo, Van Otterloo and Company , 1999, Interfaces.

[18]  W. Michalowski,et al.  Extending the MAD portfolio optimization model to incorporate downside risk aversion , 2001 .

[19]  J. Poterba,et al.  Mean Reversion in Stock Prices: Evidence and Implications , 1987 .

[20]  Keshav P. Dahal,et al.  Portfolio optimization using multi-obj ective genetic algorithms , 2007, 2007 IEEE Congress on Evolutionary Computation.

[21]  H. Nejat Seyhun,et al.  Insiders' profits, costs of trading, and market efficiency , 1986 .

[22]  Yue Qi,et al.  Suitable-portfolio investors, nondominated frontier sensitivity, and the effect of multiple objectives on standard portfolio selection , 2007, Ann. Oper. Res..

[23]  Ralph E. Steuer,et al.  Portfolio optimization: New capabilities and future methods , 2006 .

[24]  Dimitris Bertsimas,et al.  Algorithm for cardinality-constrained quadratic optimization , 2009, Comput. Optim. Appl..

[25]  Reuben Settergren,et al.  Multistage Stochastic Mean-Variance Portfolio Analysis with Transaction Costs , 2004 .

[26]  Murat Köksalan,et al.  A multi-objective multi-period stochastic programming model for public debt management , 2010, Eur. J. Oper. Res..

[27]  J. Poterba,et al.  Mean Reversion in Stock Prices: Evidence and Implications , 1987 .

[28]  A. Lo,et al.  Stock Market Prices Do Not Follow Random Walks: Evidence from a Simple Specification Test , 1987 .

[29]  Francesco Cesarone,et al.  A new method for mean-variance portfolio optimization with cardinality constraints , 2013, Ann. Oper. Res..

[30]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[31]  George B. Dantzig,et al.  Linear Programming Under Uncertainty , 2004, Manag. Sci..

[32]  Maria Grazia Speranza,et al.  On the effectiveness of scenario generation techniques in single-period portfolio optimization , 2009, Eur. J. Oper. Res..

[33]  Stein W. Wallace,et al.  Generating Scenario Trees for Multistage Decision Problems , 2001, Manag. Sci..

[34]  A. Lo,et al.  THE ECONOMETRICS OF FINANCIAL MARKETS , 1996, Macroeconomic Dynamics.

[35]  A. Stuart,et al.  Portfolio Selection: Efficient Diversification of Investments , 1959 .

[36]  Shou-Yang Wang,et al.  Stochastic Programming Models in Financial Optimization: A Survey 1 , 2003 .

[37]  L. Lasdon,et al.  On a bicriterion formation of the problems of integrated system identification and system optimization , 1971 .

[38]  Stanislav Uryasev,et al.  Conditional Value-at-Risk for General Loss Distributions , 2002 .

[39]  A. Craig MacKinlay,et al.  Stock Market Prices Do Not Follow Random Walks: Evidence from a Simple Specification Test , 1988 .

[40]  E. Beale ON MINIMIZING A CONVEX FUNCTION SUBJECT TO LINEAR INEQUALITIES , 1955 .