Remote sensing of rice crop areas

Rice means life for millions of people and it is planted in many regions of the world. It primarily grows in the major river deltas of Asia and Southeast Asia, such as the Mekong Delta, known as the Rice Bowl of Vietnam, the second-largest rice-producing nation on Earth. However, Latin America, the USA, and Australia have extensive rice-growing regions. In addition, rice is the most rapidly growing source of food in Africa. Rice is therefore of significant importance to food security in an increasing number of low-income food-deficit countries. This review article gives a complementary overview of how remote sensing can support the assessment of paddy rice cultivation worldwide. This article presents and discusses methods for rice mapping and monitoring, differentiating between the results achievable using different sensors of various spectral characteristics and spatial resolution. The remote sensing of rice-growing areas can not only contribute to the precise mapping of rice areas and the assessment of the dynamics in rice-growing regions, but can also contribute to harvest prediction modelling, the analyses of plant diseases, the assessment of rice-based greenhouse gas (methane) emission due to vegetation submersion, the investigation of erosion-control-adapted agricultural systems, and the assessment of ecosystem services in rice-growing areas.

[1]  Yang Cm,et al.  Spectral characteristics of rice plants infested by brown planthoppers. , 2001 .

[2]  B. Bouman,et al.  Crop parameter estimation from ground-based x-band (3-cm wave) radar backscattering data , 1991 .

[3]  Xin Huang,et al.  Wavelength selection and spectral discrimination for paddy rice, with laboratory measurements of hyperspectral leaf reflectance , 2011 .

[4]  F. Amerasinghe,et al.  Biodiversity associated with the rice field agroecosystem in Asian countries: a brief review , 2003 .

[5]  H. Ewe,et al.  MULTI-ANGULAR SCATTEROMETER MEASUREMENTS FOR VARIOUS STAGES OF RICE GROWTH , 2008 .

[6]  S. Panigrahy,et al.  Mapping of crop rotation using multidate Indian Remote Sensing Satellite digital data , 1997 .

[7]  Cheng-Ru Chen,et al.  Monitoring of rice cropping intensity in the upper Mekong Delta, Vietnam using time-series MODIS data , 2012 .

[8]  K. R. McCLOY,et al.  Monitoring rice areas using LANDSAT MSS data , 1987 .

[9]  Thuy Le Toan,et al.  Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results , 1997, IEEE Trans. Geosci. Remote. Sens..

[10]  Tsuyoshi Akiyama,et al.  Estimating grain yield of maturing rice canopies using high spectral resolution reflectance measurements , 1991 .

[11]  T. Sakamoto,et al.  A crop phenology detection method using time-series MODIS data , 2005 .

[12]  M. Premalatha,et al.  Crop acreage estimation using ERS-1 SAR data , 1994 .

[13]  A. Gitelson,et al.  Application of Spectral Remote Sensing for Agronomic Decisions , 2008 .

[14]  Sushma Panigrahy,et al.  A processing and software system for rice crop inventory using multi-date RADARSAT ScanSAR data , 2000 .

[15]  R. Gerpacio,et al.  Asian Rice Bowls: The Returning Crisis? , 1997 .

[16]  Reiner Wassmann,et al.  Modeling greenhouse gas emissions from rice‐based production systems: Sensitivity and upscaling , 2004 .

[17]  Yasuyuki Hidaka,et al.  Use of rice response characteristics in area estimation by LANDSAT/TM and MOS-1 satellites data , 1993 .

[18]  Sushma Panigrahy,et al.  Discrimination of rice crop grown under different cultural practices using temporal ERS-1 synthetic aperture radar data , 1997 .

[19]  M. Chakraborty,et al.  Results on potential use of simulated IRS-1C WiFS data for crop monitoring , 1995 .

[20]  G. A. Blackburn,et al.  Spectral indices for estimating photosynthetic pigment concentrations: A test using senescent tree leaves , 1998 .

[21]  T. L. Toan,et al.  A scheme for regional rice yield estimation using ENVISAT ASAR data , 2009 .

[22]  N. K. Patel,et al.  Estimation of rice yield using IRS-1A digital data in coastal tract of Orissa , 1991 .

[23]  V. Nguyen-Cong,et al.  Statistical Models for Prediction of Dry Weight and Nitrogen Accumulation Based on Visible and Near-Infrared Hyper-Spectral Reflectance of Rice Canopies , 2000 .

[24]  T. T. Medhavy,et al.  Multi temporal ERS-1 SAR data for identification of rice crop , 1995 .

[25]  B. Bouman,et al.  Field water management to save water and increase its productivity in irrigated lowland rice , 2001 .

[26]  M. Boschetti,et al.  Multi-year monitoring of rice crop phenology through time series analysis of MODIS images , 2009 .

[27]  Alexandre Bouvet,et al.  Monitoring of the Rice Cropping System in the Mekong Delta Using ENVISAT/ASAR Dual Polarization Data , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[28]  K. Tsuchiya,et al.  Comparison of SAR and optical sensor data for monitoring of rice plant around Hiroshima , 2001 .

[29]  J. Oard Asian rice bowls: The returning crisis? , 1998 .

[30]  H. Mcnairn,et al.  A neural network integrated approach for rice crop monitoring , 2006 .

[31]  V. Wuwongse,et al.  Discrimination of irrigated and rainfed rice in a tropical agricultural system using SPOT VEGETATION NDVI and rainfall data , 2005 .

[32]  X. Tian,et al.  SUPERVISED WISHART CLASSIFIER FOR RICE MAPPING USING MULTI-TEMPORAL ENVISAT ASAR APS DATA , 2007 .

[33]  N. Silleos,et al.  The use of multi-temporal NDVI measurements from AVHRR data for crop yield estimation and prediction , 1993 .

[34]  Hongling Fang,et al.  Rice crop area estimation of an administrative division in China using remote sensing data , 1998 .

[35]  Shigejiro Yoshida,et al.  Estimation of the Area of Rice Paddy Field Using Satellite Data : By Multi Level Slice Method and Band Ratio Method , 1993 .

[36]  P. C. Doraiswamya,et al.  Crop condition and yield simulations using Landsat and MODIS , 2004 .

[37]  M. V. Gupta,et al.  Culture of fish in rice fields , 2004 .

[38]  Changsheng Li,et al.  Quantitative relationships between field-measured leaf area index and vegetation index derived from VEGETATION images for paddy rice fields , 2002 .

[39]  M. Shibayama,et al.  Seasonal visible, near-infrared and mid-infrared spectra of rice canopies in relation to LAI and above-ground dry phytomass , 1989 .

[40]  Peter R. J. North,et al.  The Propagation of Foliar Biochemical Absorption Features in Forest Canopy Reflectance , 1999 .

[41]  V. Singh,et al.  A remote sensing and GIS-based methodology for the delineation and characterization of rainfed rice environments , 1996 .

[42]  W. Bastiaanssen,et al.  A new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan , 2003 .

[43]  Tim R. McVicar,et al.  Remote Sensing Of Rice-Based Irrigated Agriculture: A Review , 2005 .

[44]  J. Peñuelas,et al.  Normalized difference spectral indices for estimating photosynthetic efficiency and capacity at a canopy scale derived from hyperspectral and CO2 flux measurements in rice , 2008 .

[45]  N. K. Patel,et al.  Spectral response of rice crop and its relation to yield and yield attributes , 1985 .

[46]  P. Thenkabail,et al.  Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics , 2000 .

[47]  V. Murty,et al.  Estimation of cropped area and grain yield of rice using remote sensing data , 1992 .

[48]  N. Ramankutty,et al.  Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000 , 2008 .

[49]  Y. Inoue,et al.  Analysis of Spectral Measurements in Paddy Field for Predicting Rice Growth and Yield Based on a Simple Crop Simulation Model. , 1998 .

[50]  M. Moghaddam,et al.  Patterns of irrigated rice growth and malaria vector breeding in Mali using multi‐temporal ERS‐2 synthetic aperture radar , 2006, International journal of remote sensing.

[51]  D. J. Greenland,et al.  Sustainability of Rice Farming , 1997 .

[52]  Yuan Shen,et al.  Predicting Rice Yield Using Canopy Reflectance Measured at Booting Stage , 2005 .

[53]  H. Fang,et al.  Using NOAA AVHRR and landsat TM to estimate rice area year-by-year , 1998 .

[54]  Hong Tat Ewe,et al.  Multitemporal C-Band Radar Measurement on Rice Fields , 2007 .

[55]  Determinants of land-use change: A case study from the lower Mekong delta of southern Vietnam , 2008 .

[56]  A. Dobermann,et al.  Rice in the Global Food Supply , 2002 .

[57]  K. Okamoto,et al.  Estimation of flood damage to rice production in North Korea in 1995 , 1998 .

[58]  S. Liang,et al.  Calculating environmental moisture for per-field discrimination of rice crops , 2003 .

[59]  A. J. Richardson,et al.  Vegetation indices in crop assessments , 1991 .

[60]  Sushma Panigrahy,et al.  Early estimation of rice area using temporal ERS-1 synthetic aperture radar data a case study for the Howrah and Hughly districts of West Bengal, India , 1997 .

[61]  A. Bondeau,et al.  Combining agricultural crop models and satellite observations: from field to regional scales , 1998 .

[62]  Tim R. McVicar,et al.  Improving the analysis of Hyperion red-edge index from an agricultural area , 2003, SPIE Asia-Pacific Remote Sensing.

[63]  J. B. Dent,et al.  Global methane emissions from rice paddies , 1997 .

[64]  Byun-Woo Lee,et al.  Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression , 2006 .

[65]  K. Nackaerts,et al.  Ground-measured spectral signatures as indicators of ground cover and leaf area index: the case of paddy rice , 2001 .

[66]  Spectral characteristics of rice plants infested by brown planthoppers. , 2001, Proceedings of the National Science Council, Republic of China. Part B, Life sciences.

[67]  Tsuyoshi Akiyama,et al.  Canopy water deficit detection in paddy rice using a high resolution field spectroradiometer , 1993 .

[68]  T. Kobayashi,et al.  Detection of rice panicle blast with multispectral radiometer and the potential of using airborne multispectral scanners. , 2001, Phytopathology.

[69]  Xiangming Xiao,et al.  Mapping and modelling of greenhouse gas emissions from rice paddies with satellite radar observations and the DNDC biogeochemical model , 2007 .

[70]  Andrew Nelson,et al.  Temporal changes in rice-growing area and their impact on livelihood over a decade: A case study of Nepal , 2011 .

[71]  Sushma Panigrahy,et al.  Study on the utility of IRS-P6 AWiFS SWIR band for crop discrimination and classification , 2009 .

[72]  Hong Tat Ewe,et al.  High Angular Resolution Measurements of the Monostatic Backscattering Coefficient of Rice Fields , 2009 .

[73]  Toshihiro Sakamoto,et al.  Analysis of rapid expansion of inland aquaculture and triple rice-cropping areas in a coastal area of the Vietnamese Mekong Delta using MODIS time-series imagery , 2009 .

[74]  Thomas J. Overcamp,et al.  Estimation of Southeast Asian rice paddy areas with different ecosystems from moderate-resolution satellite imagery , 2012 .

[75]  Charles E Taylor,et al.  Effect of rice cultivation patterns on malaria vector abundance in rice-growing villages in Mali. , 2007, The American journal of tropical medicine and hygiene.

[76]  Weixing Cao,et al.  Monitoring Leaf Nitrogen Status in Rice with Canopy Spectral Reflectance , 2004, Agronomy Journal.

[77]  Peter J. Gregory,et al.  Climate change and food security , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[78]  Sushma Panigrahy,et al.  Evaluation of RADARSAT Standard Beam data for identification of potato and rice crops in India , 1999 .

[79]  Toshihiro Sakamoto,et al.  Detection of Yearly Change in Farming Systems in the Vietnamese Mekong Delta from MODIS Time-Series Imagery , 2009 .

[80]  Meiling Liu,et al.  Monitoring stress levels on rice with heavy metal pollution from hyperspectral reflectance data using wavelet-fractal analysis , 2011, Int. J. Appl. Earth Obs. Geoinformation.

[81]  Alexandre Bouvet,et al.  Rice monitoring using ENVISAT-ASAR data: preliminary results of a case study in the Mekong River Delta, Vietnam , 2007 .

[82]  M. Umeda,et al.  Multivariate analysis of nitrogen content for rice at the heading stage using reflectance of airborne hyperspectral remote sensing , 2011 .

[83]  Magdeline Laba,et al.  Landsat-based land cover mapping in the lower Yuna River watershed in the Dominican Republic , 1997 .

[84]  Sushma Panigrahy,et al.  Role of middle infrared bands of Landsat thematic mapper in determining the classification accuracy of rice , 1992 .

[85]  Takashi Kurosu,et al.  The identification of rice fields using multi-temporal ERS-1 C band SAR data , 1997 .

[86]  A. Huete,et al.  Overview of the radiometric and biophysical performance of the MODIS vegetation indices , 2002 .

[87]  Changsheng Li,et al.  Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images , 2006 .

[88]  M. Fukuhara,et al.  Estimation of paddy field area using the area ratio of categories in each mixel of Landsat TM , 1996 .

[89]  Jai Singh Parihar,et al.  ESTIMATION OF RICE GROWTH PARAMETER AND CROP PHENOLOGY WITH CONJUNCTIVE USE OF RADARSAT AND ENVISAT , 2007 .

[90]  Tim R. McVicar,et al.  Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes , 2003, IEEE Trans. Geosci. Remote. Sens..

[91]  Multisensor Comparisons for Validation of MODIS Vegetation Indices , 2006 .

[92]  Ramaswamy Sakthivadivel,et al.  Satellite remote sensing for assessment of irrigation system performance: a case study in India , 1997 .

[93]  Yoshiki Yamagata,et al.  Spectral Observations for Estimating the Growth and Yield of Rice , 1989 .

[94]  B. Brisco,et al.  Rice monitoring and production estimation using multitemporal RADARSAT , 2001 .

[95]  Rong-Kuen Chen,et al.  Modeling Rice Growth with Hyperspectral Reflectance Data , 2004 .

[96]  Jin Au Kong,et al.  Electromagnetic Scattering Model for Rice Canopy Based on Monte Carlo Simulation , 2005 .

[97]  P. Barbosa,et al.  Performance of several Landsat 5 Thematic Mapper (TM) image classification methods for crop extent estimates in an irrigation district , 1996 .

[98]  K. Badarinath,et al.  Agriculture crop residue burning in the Indo-Gangetic Plains - : A study using IRS-P6 AWiFS satellite data , 2006 .

[99]  B. Wood,et al.  Distinguishing high and low anopheline-producing rice fields using remote sensing and GIS technologies , 1991 .

[100]  Changsheng Li,et al.  Mapping paddy rice agriculture in southern China using multi-temporal MODIS images , 2005 .

[101]  B. Datt Remote Sensing of Chlorophyll a, Chlorophyll b, Chlorophyll a+b, and Total Carotenoid Content in Eucalyptus Leaves , 1998 .

[102]  Y. Yamagata,et al.  Water turbidity and perpendicular vegetation indices for paddy rice flood damage analyses , 1988 .

[103]  Navin Ramankutty,et al.  Geographic distribution of major crops across the world , 2004 .

[104]  N. Zhang,et al.  Precision agriculture—a worldwide overview , 2002 .

[105]  Hiroyuki Ohno,et al.  Spatio-temporal distribution of rice phenology and cropping systems in the Mekong Delta with special reference to the seasonal water flow of the Mekong and Bassac rivers , 2006 .

[106]  Hui Lin,et al.  The relationship between the leaf area index (LAI) of rice and the C‐band SAR vertical/horizontal (VV/HH) polarization ratio , 2009 .

[107]  F. Holecz,et al.  AN OPERATIONAL RICE FIELD MAPPING TOOL USING SPACEBORNE SAR DATA , 2000 .

[108]  M. Diuk-Wasser,et al.  Mapping rice field anopheline breeding habitats in Mali, West Africa, using Landsat ETM+ sensor data , 2004, International journal of remote sensing.

[109]  H. Ewe,et al.  CLASSIFICATION OF MULTI-TEMPORAL SAR IMAGES FOR RICE CROPS USING COMBINED ENTROPY DECOMPOSITION AND SUPPORT VECTOR MACHINE TECHNIQUE , 2007 .

[110]  Hui Lin,et al.  Application of ENVISAT ASAR Data in Mapping Rice Crop Growth in Southern China , 2007, IEEE Geoscience and Remote Sensing Letters.

[111]  D. Sims,et al.  Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages , 2002 .

[112]  Masaharu Fujita,et al.  Monitoring of rice crop growth from space using the ERS-1 C-band SAR , 1995, IEEE Trans. Geosci. Remote. Sens..

[113]  Hoonyol Lee,et al.  Radar Backscattering Measurement of a Paddy Rice Field using Multi-frequency(L, C and X) and Full-polarization , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[114]  Prabhu Pingali,et al.  Pesticides, rice productivity, and farmers' health: an economic assessment. , 1993 .

[115]  J. Melack,et al.  Remote sensing of foliar chemistry of inundated rice with imaging spectrometry , 1996 .

[116]  B. Bouman,et al.  Crop modelling and remote sensing for yield prediction , 1995 .

[117]  K. Inada,et al.  Spectral Ratio of Reflectance for Estimating Chlorophyll Content of Leaf , 1985 .

[118]  K. Heong Biodiversity, ecosystem services and pest management , 2008 .

[119]  Russell G. Congalton,et al.  Classification of multi-temporal SPOT-XS satellite data for mapping rice fields on a West African floodplain , 1998 .

[120]  M. F. Gross,et al.  Continental scale variability in vegetation reflectance and its relationship to canopy morphology , 1988 .

[121]  R. Martin,et al.  Spectral reflectance patterns of flooded rice , 1986 .

[122]  Jinheng Zhang,et al.  Predicting Nitrogen Status of Rice Using Multispectral Data at Canopy Scale , 2006 .

[123]  Rong-Kuen Chen,et al.  Changes in spectral characteristics of rice canopy infested with brown planthopper and leaffolder , 2007 .

[124]  J. Goudriaan,et al.  Monitoring rice reflectance at field level for estimating biomass and LAI , 1998 .

[125]  Seiho Uratsuka,et al.  Season-long daily measurements of multifrequency (Ka, Ku, X, C, and L) and full-polarization backscatter signatures over paddy rice field and their relationship with biological variables , 2002 .

[126]  Cao Weixing,et al.  Canopy Spectral Reflectance Characteristics of Rice with Different Cultural Practices and Their Fuzzy Cluster Analysis , 2005 .

[127]  Randolph Barker,et al.  The Rice Economy of Asia , 2014 .

[128]  Kuo-Wei Chang,et al.  A Simple Spectral Index Using Reflectance of 735 nm to Assess Nitrogen Status of Rice Canopy , 2008 .

[129]  Ping Chen,et al.  Application of multitemporal ERS-2 synthetic aperture radar in delineating rice cropping systems in the Mekong River Delta, Vietnam , 1998, IEEE Trans. Geosci. Remote. Sens..

[130]  S. Polasky,et al.  Agricultural sustainability and intensive production practices , 2002, Nature.

[131]  S. R. Oza,et al.  Observing long-term changes in rice phenology using NOAA-AVHRR and DMSP-SSM/I satellite sensor measurements in Punjab, India , 2006 .

[132]  Sun Guo-qing,et al.  Monitoring of rice crop using ENVISAT ASAR data , 2006 .