Moving object detection for real-time augmented reality applications in a GPGPU

The last generation of consumer electronic devices is endowed with Augmented Reality (AR) tools. These tools require moving object detection strategies, which should be fast and efficient, to carry out higher level object analysis tasks. We propose a lightweight spatio-temporal-based non-parametric background-foreground modeling strategy in a General Purpose Graphics Processing Unit (GPGPU), which provides real-time high-quality results in a great variety of scenarios and is suitable for AR applications.

[1]  Jong-Il Park,et al.  Fast view synthesis using GPU for 3D display , 2008, IEEE Transactions on Consumer Electronics.

[2]  Nikos Paragios,et al.  Scene modeling and change detection in dynamic scenes: A subspace approach , 2009, Comput. Vis. Image Underst..

[3]  Thierry Bouwmans,et al.  Background Modeling using Mixture of Gaussians for Foreground Detection - A Survey , 2008 .

[4]  Dieter Schmalstieg,et al.  Real-Time Detection and Tracking for Augmented Reality on Mobile Phones , 2010, IEEE Transactions on Visualization and Computer Graphics.

[5]  Takayoshi Yamashita,et al.  Towards Robust Object Detection: Integrated Background Modeling Based on Spatio-temporal Features , 2009, ACCV.

[6]  Tieniu Tan,et al.  Modeling Complex Scenes for Accurate Moving Objects Segmentation , 2010, ACCV.

[7]  Massimo Piccardi,et al.  Background subtraction techniques: a review , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[8]  L. Wixson Detecting Salient Motion by Accumulating Directionally-Consistent Flow , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Manuele Bicego,et al.  Unsupervised scene analysis: A hidden Markov model approach , 2006, Comput. Vis. Image Underst..

[10]  Monica N. Nicolescu,et al.  Non-parametric statistical background modeling for efficient foreground region detection , 2008, Machine Vision and Applications.

[11]  Kentaro Toyama,et al.  Wallflower: principles and practice of background maintenance , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[12]  Liang-Gee Chen,et al.  A real-time 1080p 2D-to-3D video conversion system , 2011, IEEE Transactions on Consumer Electronics.

[13]  Fernando Jaureguizar,et al.  High-quality real-time moving object detection by non-parametric segmentation , 2010 .

[14]  D. W. F. van Krevelen,et al.  A Survey of Augmented Reality Technologies, Applications and Limitations , 2010, Int. J. Virtual Real..

[15]  Narciso García,et al.  Automatic bandwidth estimation strategy for high-quality non-parametric modeling based moving object detection , 2011, 2011 18th IEEE International Conference on Image Processing.

[16]  ShahMubarak,et al.  Bayesian Modeling of Dynamic Scenes for Object Detection , 2005 .

[17]  Sang Chul Ahn,et al.  Tangible video teleconference system using real-time image-based relighting , 2009, IEEE Transactions on Consumer Electronics.

[18]  Shireen Elhabian,et al.  Moving Object Detection in Spatial Domain using Background Removal Techniques - State-of-Art , 2008 .

[19]  Takeo Kanade,et al.  Background Subtraction for Freely Moving Cameras , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[20]  Vittorio Murino,et al.  Background Subtraction for Automated Multisensor Surveillance: A Comprehensive Review , 2010, EURASIP J. Adv. Signal Process..

[21]  B. Neelima,et al.  Recent trends in software and hardware for GPGPU computing: A comprehensive survey , 2010, 2010 5th International Conference on Industrial and Information Systems.

[22]  Tarek S. Abdelrahman,et al.  hiCUDA: High-Level GPGPU Programming , 2011, IEEE Transactions on Parallel and Distributed Systems.

[23]  Chunhong Pan,et al.  Adaptive εLBP for Background Subtraction , 2010, ACCV.

[24]  Robert Pless,et al.  Evaluation of local models of dynamic backgrounds , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[25]  Nicolas Martel-Brisson,et al.  Unsupervised approach for building non-parametric background and foreground models of scenes with significant foreground activity , 2008, VNBA '08.

[26]  Peter H. N. de With,et al.  Automatic video-based human motion analyzer for consumer surveillance system , 2009, IEEE Transactions on Consumer Electronics.

[27]  Yaser Sheikh,et al.  Bayesian modeling of dynamic scenes for object detection , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Nikos Paragios,et al.  Motion-based background subtraction using adaptive kernel density estimation , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[29]  William J. Dally,et al.  GPUs and the Future of Parallel Computing , 2011, IEEE Micro.

[30]  Xiaokang Yang,et al.  Efficient Spatio-temporal Segmentation for Extracting Moving Objects in Video Sequences , 2007, IEEE Transactions on Consumer Electronics.

[31]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[32]  W. Eric L. Grimson,et al.  Learning Patterns of Activity Using Real-Time Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..