An easy parameter estimation procedure for modeling a HT-PEMFC

Abstract Fuel cells are a very complex system in which many phenomena of different nature occur simultaneously and within a small space, so a truthful measurement of some variables is not feasible using state-of-the-art technology. If a deep knowledge of the unit is desired, modeling can be of great help when it is properly used as it is possible to calculate the value of the variables of interest by adjusting experimental data. However, when models are complicated, it is not trivial to identify in which way a certain parameter alters the model results and then it is necessary to resort to sensitivity analysis before approaching an adequate parameter estimation procedure. In this work, a parameter estimation procedure has been proposed with the results obtained from the sensitivity analysis applied to a high temperature proton exchange membrane fuel cell (HT-PEMFC) model. The procedure has been demonstrated to be straightforwardly applicable as well as effective, which makes it suitable to be used as engineering tool to obtain a first consistent value of the parameters that define the main characteristics of a HT-PEMFC.

[1]  M. Pan,et al.  A fractal permeability model for the gas diffusion layer of PEM fuel cells , 2006 .

[2]  M. Dokupil,et al.  On-board fuel cell power supply for sailing yachts , 2005 .

[3]  Jiujun Zhang,et al.  PEM Fuel Cell Electrocatalysts and Catalyst Layers , 2008 .

[4]  Søren Knudsen Kær,et al.  Experimental characterization and modeling of commercial polybenzimidazole-based MEA performance , 2006 .

[5]  Pablo Cañizares,et al.  Improved polybenzimidazole films for H3PO4-doped PBI-based high temperature PEMFC , 2007 .

[6]  Christopher Hebling,et al.  Characterising PEM Fuel Cell Performance Using a Current Distribution Measurement in Comparison with a CFD Model , 2004 .

[7]  Torsten Berning,et al.  Improving the performance of high-temperature PEM fuel cells based on PBI electrolyte , 2006 .

[8]  Yanghua Tang,et al.  Polybenzimidazole-membrane-based PEM fuel cell in the temperature range of 120–200 °C , 2007 .

[9]  Joseph R. Davis,et al.  ASM Materials Engineering Dictionary , 1992 .

[10]  Ned Djilali,et al.  THREE-DIMENSIONAL COMPUTATIONAL ANALYSIS OF TRANSPORT PHENOMENA IN A PEM FUEL CELL , 2002 .

[11]  Ned Djilali,et al.  Three-dimensional computational analysis of transport phenomena in a PEM fuel cell—a parametric study , 2003 .

[12]  J. Pharoah On the permeability of gas diffusion media used in PEM fuel cells , 2005 .

[13]  Elena Carcadea,et al.  The influence of permeability changes for a 7-serpentine channel pem fuel cell performance , 2011 .

[14]  Biao Zhou,et al.  A general model of proton exchange membrane fuel cell , 2008 .

[15]  Adélio Mendes,et al.  A dynamic model for high temperature polymer electrolyte membrane fuel cells , 2011 .

[16]  Pablo Cañizares,et al.  Three-dimensional model of a 50 cm2 high temperature PEM fuel cell. Study of the flow channel geometry influence , 2010 .

[17]  Wei-Mon Yan,et al.  Effects of the gas diffusion-layer parameters on cell performance of PEM fuel cells , 2006 .

[18]  Matthew M. Mench,et al.  Fuel Cell Engines , 2008 .

[19]  Harvey G. Stenger,et al.  Main and interaction effects of PEM fuel cell design parameters , 2006 .

[20]  K. M. Chittajallu,et al.  Optimization of the cathode geometry in polymer electrolyte membrane (PEM) fuel cells , 2004 .

[21]  K. Scott,et al.  Analysis of high temperature polymer electrolyte membrane fuel cell electrodes using electrochemical impedance spectroscopy , 2011 .

[22]  J. C. Amphlett,et al.  Application of Butler–Volmer equations in the modelling of activation polarization for PEM fuel cells , 2006 .

[23]  A. Suleman,et al.  Numerical optimization of proton exchange membrane fuel cell cathodes , 2007 .

[24]  Norman Munroe,et al.  Mathematical model of a PEMFC using a PBI membrane , 2006 .

[25]  J. Giddings,et al.  NEW METHOD FOR PREDICTION OF BINARY GAS-PHASE DIFFUSION COEFFICIENTS , 1966 .

[26]  Hyunchul Ju,et al.  A single-phase, non-isothermal model for PEM fuel cells , 2005 .

[27]  Ned Djilali,et al.  Systematic parameter estimation for PEM fuel cell models , 2005 .

[28]  K. Scott,et al.  A High Temperature Polymer Electrolyte Membrane Fuel Cell Model for Reformate Gas , 2011 .

[29]  Wei Jiang,et al.  Parameter sensitivity examination and discussion of PEM fuel cell simulation model validation. Part I. Current status of modeling research and model development , 2006 .

[30]  Akeel A. Shah,et al.  Recent trends and developments in polymer electrolyte membrane fuel cell modelling , 2011 .

[31]  Norman Munroe,et al.  A two-phase model of an intermediate temperature PEM fuel cell , 2007 .

[32]  Maher A.R. Sadiq Al-Baghdadi,et al.  Performance comparison between airflow-channel and ambient air-breathing PEM fuel cells using three-dimensional computational fluid dynamics models , 2009 .

[33]  Hyunchul Ju,et al.  Experimental Validation of a PEM Fuel Cell Model by Current Distribution Data , 2004 .

[34]  Stephen P. Miller,et al.  A thermodynamic approach to proton conductivity in acid-doped polybenzimidazole , 2001 .

[35]  Yun Wang,et al.  A review of polymer electrolyte membrane fuel cells: Technology, applications,and needs on fundamental research , 2011 .

[36]  James J. McGuirk,et al.  Three-dimensional model of a complete polymer electrolyte membrane fuel cell : model formulation, validation and parametric studies , 2005 .

[37]  Hubert A. Gasteiger,et al.  Dependence of PEM fuel cell performance on catalyst loading , 2004 .

[38]  P. Cañizares,et al.  Study of flow channel geometry using current distribution measurement in a high temperature polymer , 2011 .

[39]  N. Hanspal,et al.  Three-dimensional CFD modelling of PEM fuel cells: an investigation into the effects of water flooding , 2009 .

[40]  Hongtan Liu,et al.  A parametric study of the cathode catalyst layer of PEM fuel cells using a pseudo-homogeneous model , 2001 .

[41]  Harvey G. Stenger,et al.  Computational fluid dynamics modeling of polymer electrolyte membrane fuel cells , 2005 .

[42]  Jesse S. Wainright,et al.  Conductivity of PBI Membranes for High-Temperature Polymer Electrolyte Fuel Cells , 2004 .

[43]  Wei-Mon Yan,et al.  Optimization of key parameters in the proton exchange membrane fuel cell , 2006 .

[44]  Duu-Jong Lee,et al.  Flow field optimization for proton exchange membrane fuel cells with varying channel heights and widths , 2009 .

[45]  M. Tohidi,et al.  Effect of primary parameters on the performance of PEM fuel cell , 2010 .

[46]  K. M. Chittajallu,et al.  Design and optimization of polymer electrolyte membrane (PEM) fuel cells , 2004 .

[47]  Jie Peng,et al.  Numerical simulation of proton exchange membrane fuel cells at high operating temperature , 2006 .

[48]  W. Tao,et al.  Parameter sensitivity examination and discussion of PEM fuel cell simulation model validation. Part II: Results of sensitivity analysis and validation of the model , 2006 .

[49]  N. Fouquet,et al.  Three-dimensional simulation of polymer electrolyte membrane fuel cells with experimental validation , 2011 .