Irreducible decompositions and stationary states of quantum channels

For a quantum channel (completely positive, trace-preserving map), we prove a generalization to the infinite dimensional case of a result by Baumgartner and Narnhofer. This result is, in a probabilistic language, a decomposition of a general quantum channel into its irreducible positive recurrent components. This decomposition is related with a communication relation on the reference Hilbert space. This allows us to describe the full structure of invariant states of a quantum channel, and of their supports.

[1]  E. Davies,et al.  Quantum stochastic processes , 1969 .

[2]  Sergio Albeverio,et al.  Frobenius theory for positive maps of von Neumann algebras , 1978 .

[3]  Veronica Umanità,et al.  Classification and decomposition of Quantum Markov Semigroups , 2006 .

[4]  Fermi Golden Rule and Open Quantum Systems , 2006 .

[5]  F. Fagnola,et al.  Subharmonic projections for a quantum Markov semigroup , 2002 .

[6]  Saverio Bolognani,et al.  Engineering Stable Discrete-Time Quantum Dynamics via a Canonical QR Decomposition , 2009, IEEE Transactions on Automatic Control.

[7]  B. Baumgartner,et al.  The structures of state space concerning Quantum Dynamical Semigroups , 2011, 1101.3914.

[8]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[9]  A. Frigerio Quantum dynamical semigroups and approach to equilibrium , 1977 .

[10]  R. Carbone,et al.  Homogeneous Open Quantum Random Walks on a Lattice , 2014, 1408.1113.

[11]  Maurizio Verri,et al.  Long-time asymptotic properties of dynamical semigroups onW*-algebras , 1982 .

[12]  Raffaella Carbone OPTIMAL LOG-SOBOLEV INEQUALITY AND HYPERCONTRACTIVITY FOR POSITIVE SEMIGROUPS ON $M_2({\mathbb C})$ , 2004 .

[13]  F. Petruccione,et al.  Open Quantum Random Walks , 2012, 1402.3253.

[14]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[15]  P. Perinotti,et al.  Ergodic and mixing quantum channels in finite dimensions , 2012, 1210.5625.

[16]  U. Groh The peripheral point spectrum of schwarz operators onC*-algebras , 1981 .

[17]  D. Poulin,et al.  Information-preserving structures: A general framework for quantum zero-error information , 2010, 1006.1358.

[18]  Jun Tomiyama,et al.  ON THE PROJECTION OF NORM ONE IN W*-ALGEBRAS, III , 1957 .

[19]  V. Umanità,et al.  Structure of Uniformly Continuous Quantum Markov Semigroups , 2014, 1412.3239.

[20]  O. Bratteli Operator Algebras And Quantum Statistical Mechanics , 1979 .

[21]  A. Joye,et al.  Repeated interactions in open quantum systems , 2013, 1305.2472.

[22]  B. Russo,et al.  A note on unitary operators in $C\sp{\ast}$-algebras , 1966 .

[23]  R. Schrader Perron-Frobenius Theory for Positive Maps on Trace Ideals , 2000, math-ph/0007020.

[24]  R. Høegh-Krohn,et al.  Spectral Properties of Positive Maps on C*‐Algebras , 1978 .

[25]  A Perron-Frobenius type theorem for positive linear maps on $C^ast $-algebras , 1979 .

[26]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .

[27]  Raffaella Carbone,et al.  Open Quantum Random Walks: Reducibility, Period, Ergodic Properties , 2014, 1405.2214.

[28]  ON THE PROJECTION OF NORM ONE IN W*-ALGEBRAS, III , 1958 .

[29]  E. Davies,et al.  Quantum stochastic processes II , 1970 .