A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters

In the event of a natural disaster, remote sensing is a valuable source of spatial information and its utility has been proven on many occasions around the world. However, there are many different types of hazards experienced worldwide on an annual basis and their remote sensing solutions are equally varied. This paper addresses a number of data types and image processing techniques used to map and monitor earthquakes, faulting, volcanic activity, landslides, flooding, and wildfire, and the damages associated with each. Remote sensing is currently used operationally for some monitoring programs, though there are also difficulties associated with the rapid acquisition of data and provision of a robust product to emergency services as an end-user. The current status of remote sensing as a rapid-response data source is discussed, and some perspectives given on emerging airborne and satellite technologies.

[1]  P. Mouginis-Mark,et al.  Monitoring the evolution of the Pasig–Potrero alluvial fan, Pinatubo Volcano, using a decade of remote sensing data , 2004 .

[2]  Sergey V. Samsonov,et al.  Using Remote Sensing for Mapping the Effects of Natural Hazards in New Zealand , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[3]  W. Murphy,et al.  Airborne remote sensing for landslide hazard assessment: a case study on the Jurassic escarpment slopes of Worcestershire, UK , 2005, Quarterly Journal of Engineering Geology and Hydrogeology.

[4]  Simon A. Carn,et al.  Remote monitoring of Indonesian volcanoes using satellite data from the Internet , 2000 .

[5]  M. Matsuoka,et al.  Building Damage Mapping of the 2003 Bam, Iran, Earthquake Using Envisat/ASAR Intensity Imagery , 2005 .

[6]  V. Lombardo,et al.  Lava flow thermal analysis using three infrared bands of remote-sensing imagery: A study case from Mount Etna 2001 eruption , 2006 .

[7]  John R. Jensen,et al.  Introductory Digital Image Processing: A Remote Sensing Perspective , 1986 .

[8]  Ferdinand Bonn,et al.  Monitoring Flood Extent and Forecasting Excess Runoff Risk with RADARSAT-1 Data , 2005 .

[9]  Jesús San-Miguel-Ayanz,et al.  Evaluation of RADARSAT-1 Data for Identification of Burnt Areas in Southern Europe. , 2004 .

[10]  Maria Fabrizia Buongiorno,et al.  Mt. Etna sulfur dioxide flux monitoring using ASTER-TIR data and atmospheric observations , 2006 .

[11]  David P. Roy,et al.  An in situ study of the effects of surface anisotropy on the remote sensing of burned savannah , 2005 .

[12]  Chiang Wei,et al.  Locating landslides using multi-temporal satellite images , 2004 .

[13]  Arun K. Saraf,et al.  Remote sensing observations of pre‐earthquake thermal anomalies in Iran , 2006 .

[14]  Paul L. Rosin,et al.  Monitoring landslides from optical remotely sensed imagery: the case history of Tessina landslide, Italy , 2003 .

[15]  Eric S. Kasischke,et al.  Mapping fire scars in global boreal forests using imaging radar data , 2002 .

[16]  Simon A. Carn,et al.  A satellite chronology of the May–June 2003 eruption of Anatahan volcano , 2005 .

[17]  K. Feigl,et al.  Radar interferometry and its application to changes in the Earth's surface , 1998 .

[18]  A. Harris,et al.  MODVOLC: near-real-time thermal monitoring of global volcanism , 2004 .

[19]  Paris W. Vachon,et al.  Flood monitoring using ERS-1 SAR interferometry coherence maps , 1996, IGARSS '96. 1996 International Geoscience and Remote Sensing Symposium.

[20]  Charles K. Huyck,et al.  Engineering and Organizational Issues Related to The World Trade Center Terrorist Attack. Volume 3: Emergency Response in the Wake of the World Trade Center Attack: The Remote Sensing Perspective , 2002 .

[21]  William I. Rose,et al.  Downstream aggradation owing to lava dome extrusion and rainfall runoff at Volcán Santiaguito, Guatemala , 2006 .

[22]  David C. Pieri,et al.  ASTER watches the world's volcanoes: a new paradigm for volcanological observations from orbit , 2004 .

[23]  David Pairman,et al.  Terrain influences on SAR backscatter around Mt. Taranaki, New Zealand , 1997, IEEE Trans. Geosci. Remote. Sens..

[24]  Paul L. Rosin,et al.  Remote sensing image thresholding methods for determining landslide activity , 2005 .

[25]  G. Staples,et al.  RADARSAT image characteristics and application requirements , 1995, Proceedings International Radar Conference.

[26]  Takashi Maeda,et al.  Experiment and Theoretical Study of Earthquake Detection Capability by Means of Microwave Passive Sensors on a Satellite , 2009, IEEE Geoscience and Remote Sensing Letters.

[27]  Katrin Molch,et al.  Characterizing and monitoring rockslides from SAR techniques , 2004 .

[28]  I. Sandholt,et al.  Remote sensing techniques for flood monitoring in the Senegal River Valley , 2003 .

[29]  Dimitar Ouzounov,et al.  Satellite thermal IR phenomena associated with some of the major earthquakes in 1999–2003 , 2006 .

[30]  V. Singhroy,et al.  Landslide characterisation in Canada using interferometric SAR and combined SAR and TM images , 1998 .

[31]  A. Kääb Monitoring high-mountain terrain deformation from repeated air- and spaceborne optical data: examples using digital aerial imagery and ASTER data , 2002 .

[32]  Richard Walker,et al.  A remote sensing study of active folding and faulting in southern Kerman province, S.E. Iran , 2006 .

[33]  Gianfranco Fornaro,et al.  A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms , 2002, IEEE Trans. Geosci. Remote. Sens..

[34]  Fred Prata,et al.  An evaluation of volcanic cloud detection techniques during recent significant eruptions in the western 'Ring of Fire' , 2004 .

[35]  Fabio Rocca,et al.  Permanent scatterers in SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..

[36]  Ashbindu Singh,et al.  Review Article Digital change detection techniques using remotely-sensed data , 1989 .

[37]  Masaru Arakida,et al.  Sentinel Asia initiative for disaster management support in the Asia-Pacific region , 2006, SPIE Asia-Pacific Remote Sensing.

[38]  P. Francis,et al.  Remote sensing of volcanoes , 1989 .

[39]  Shuichi Rokugawa,et al.  Detection and Volume Estimation of Large-Scale Landslides Based on Elevation-Change Analysis Using DEMs Extracted From High-Resolution Satellite Stereo Imagery , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[40]  Edwin Nissen,et al.  Reinterpretation of the active faulting in central Mongolia , 2007 .

[41]  Michael J. Garay,et al.  Multi-angle Imaging SpectroRadiometer (MISR) time-lapse imagery of tsunami waves from the 26 December 2004 Sumatra–Andaman earthquake , 2007 .

[42]  Clive Oppenheimer Crater Lake heat losses estimated by remote sensing , 1996 .

[43]  Norman Kerle,et al.  Remote sensing of the 1998 mudflow at Casita volcano, Nicaragua , 2003 .

[44]  Stefan Voigt,et al.  Satellite Image Analysis for Disaster and Crisis-Management Support , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[45]  C. Huyck,et al.  Emergency Response in the Wake of the World Trade Center Attack: The Remote Sensing Perspective , 2002 .

[46]  V. Kastelic,et al.  Application of airborne LiDAR to mapping seismogenic faults in forested mountainous terrain, southeastern Alps, Slovenia , 2006 .

[47]  Harold C. Macdonald,et al.  "Vegetation Penetration" with K-Band Imaging Radars , 1971 .

[48]  F. Siegert,et al.  ERS SAR backscatter: a potential real-time indicator of the proneness of modified rainforests to fire , 2001 .

[49]  Andrew J. Blanchard,et al.  DETECTION OF LOWLAND FLOODING USING ACTIVE MICROWAVE SYSTEMS. , 1985 .

[50]  J. Dozier A method for satellite identification of surface temperature fields of subpixel resolution , 1981 .

[51]  Karen E. Joyce,et al.  Assessing Image Processing Techniques for Mapping Landslides , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[52]  Peter J. Mouginis-Mark,et al.  Effects of viewing geometry on AVHRR observations of volcanic thermal anomalies , 1994 .

[53]  Marc L. Imhoff,et al.  Monsoon flood boundary delineation and damage assessment using space borne imaging radar and Landsat data , 1987 .

[54]  T. Kaneko,et al.  Thermal observation of the 1986 eruption of Izu-Oshima volcano (Japan) using landsat TM data , 1998 .

[55]  J. Nichol,et al.  Application of high-resolution satellite images to detailed landslide hazard assessment , 2009, 2009 Joint Urban Remote Sensing Event.

[56]  Xinglin Lei,et al.  Mapping active fault associated with the 2003 Mw 6.6 Bam (SE Iran) earthquake with ASTER 3D images , 2004 .

[57]  Yunjin Kim,et al.  Polarimetric synthetic aperture radar study of the Tsaoling landslide generated by the 1999 Chi‐Chi earthquake, Taiwan , 2003 .

[58]  Laurent Ferro-Famil,et al.  Building characterization using L-band polarimetric interferometric SAR data , 2005, IEEE Geoscience and Remote Sensing Letters.

[59]  Kenneth J. Ranson,et al.  Disturbance recognition in the boreal forest using radar and Landsat-7 , 2003 .

[60]  E. Carranza,et al.  Remote sensing of temporal variations in spatial distributions of lahar and pyroclastic - flow deposits, west Mount Pinatubo, Philippines , 2004 .

[61]  T. Gillespie,et al.  Assessment and prediction of natural hazards from satellite imagery , 2007, Progress in physical geography.

[62]  Diego Coppola,et al.  Analysis of volcanic activity patterns using MODIS thermal alerts , 2005 .

[63]  Jianguo Du,et al.  Complex geometry and segmentation of the surface rupture associated with the 14 November 2001 great Kunlun earthquake, northern Tibet, China , 2005 .

[64]  J. Nichol,et al.  Application of high-resolution stereo satellite images to detailed landslide hazard assessment , 2006 .

[65]  Nazzareno Pierdicca,et al.  Satellite radar and optical remote sensing for earthquake damage detection: results from different case studies , 2006 .

[66]  Steve Chien,et al.  Flood detection and monitoring with the Autonomous Sciencecraft Experiment onboard EO-1 , 2006 .

[67]  Andreas Kääb,et al.  Evaluation of ASTER and SRTM DEM data for lahar modeling: A case study on lahars from Popocatépetl Volcano, Mexico , 2008 .

[68]  Martin J. Wooster,et al.  Landsat infrared analysis of fumarole activity at Unzen volcano : time-series comparison with gas and magma fluxes , 1999 .

[69]  John R. Dymond,et al.  Validation of a region-wide model of landslide susceptibility in the Manawatu-Wanganui region of New Zealand , 2006 .

[70]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[71]  D. Roy,et al.  Characterizing the surface heterogeneity of fire effects using multi‐temporal reflective wavelength data , 2005 .

[72]  Helmut Rott,et al.  The contribution of radar interferometry to the assessment of landslide hazards , 2006 .

[73]  Alfred J Prata,et al.  Infrared radiative transfer calculations for volcanic ash clouds , 1989 .

[74]  Robert Wright,et al.  On the retrieval of lava-flow surface temperatures from infrared satellite data , 2003 .

[75]  Christophe Delacourt,et al.  Contribution of multi-temporal remote sensing images to characterize landslide slip surface -- Application to the La Clapière landslide (France) , 2005 .

[76]  M. Abrams,et al.  ASTER observations of thermal anomalies preceding the April 2003 eruption of Chikurachki volcano, Kurile Islands, Russia , 2005 .

[77]  A. Harris,et al.  The evolution of an active silicic lava flow field: an ETM+ perspective , 2004 .

[78]  Martin Sweeting,et al.  First results from the disaster monitoring constellation (DMC) A. da Silva Curiel, L. Boland, J. Cooksley, M. Bekhti, P. Stephens, , 2005 .

[79]  V. Realmuto,et al.  Multispectral thermal infrared mapping of sulfur dioxide plumes: A case study from the East Rift Zone of Kilauea Volcano, Hawaii , 1997 .

[80]  M. Wong,et al.  Detection and interpretation of landslides using satellite images , 2005 .

[81]  Vincent G. Ambrosia,et al.  NASA Science Serving Society: Improving Capabilities for Fire Characterization to Effect Reduction in Disaster Losses , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[82]  Jonathan Dehn,et al.  Integrated satellite observations of the 2001 eruption of Mt. Cleveland, Alaska , 2004 .

[83]  Martin J. Wooster,et al.  Satellite thermal analysis of the 1986 Izu-Oshima lava flows , 2005 .

[84]  Jiann-Yeou Rau,et al.  Dynamics Monitoring and Disaster Assessment for Watershed Management Using Time-Series Satellite Images , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[85]  R. Hanssen Radar Interferometry: Data Interpretation and Error Analysis , 2001 .

[86]  Louis Giglio,et al.  Application of the Dozier retrieval to wildfire characterization: a sensitivity analysis , 2001 .

[87]  K. Vinod Kumar,et al.  Mapping damage in the Jammu and Kashmir caused by 8 October 2005 Mw 7.3 earthquake from the Cartosat–1 and Resourcesat–1 imagery , 2006 .

[88]  Rou-Fei Chen,et al.  Topographical changes revealed by high-resolution airborne lidar data; the 1999 Tsaoling landslide induced by the Chi-chi earthquake , 2006 .

[89]  David J. Schneider,et al.  Advantageous GOES IR results for ash mapping at high latitudes: Cleveland eruptions 2001 , 2005 .

[90]  Krištof Oštir,et al.  Application of satellite remote sensing in natural hazard management: The Mount Mangart landslide case study , 2003 .

[91]  L. Flynn,et al.  Comparison of the response of the Landsat 7 Enhanced Thematic Mapper Plus and the Earth Observing-1 Advanced Land Imager over active lava flows , 2004 .

[92]  H. Zebker,et al.  A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers , 2004 .

[93]  E. Hoy,et al.  Evaluating the potential of the Normalized Burn Ratio and other spectral indices for assessment of fire severity in Alaskan Black Spruce forests. , 2007 .

[94]  Paul J. Curran,et al.  Use of Semivariograms to Identify Earthquake Damage in an Urban Area , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[95]  R. Oberstadler,et al.  Assessment of the mapping capabilities of ERS-1 SAR data for flood mapping: a case study in Germany , 1997 .

[96]  W. P. Waite,et al.  Use of Seasat satellite radar imagery for the detection of standing water beneath forest vegetation , 1981 .

[97]  V. Singhroy,et al.  Sar integrated techniques for geohazard assessment , 1995 .

[98]  Zhong Lu,et al.  Quiescent deformation of the Aniakchak Caldera, Alaska, mapped by InSAR , 2006 .

[99]  M. Urai,et al.  Detection of traces of pyroclastic flows and lahars with satellite synthetic aperture radars , 2005 .

[100]  J. Nichol,et al.  Satellite remote sensing for detailed landslide inventories using change detection and image fusion , 2005 .

[101]  D. Tralli,et al.  Satellite remote sensing of earthquake, volcano, flood, landslide and coastal inundation hazards , 2005 .

[102]  Matthew R. Patrick,et al.  Numerical modeling of lava flow cooling applied to the 1997 Okmok eruption: Comparison with advanced very high resolution radiometer thermal imagery , 2005 .