Remote sensing of atmospheric particulate mass of dry PM2.5 near the ground: Method validation using ground-based measurements

[1]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[2]  John L. Gras,et al.  TEOM vs. manual gravimetric methods for determination of PM2.5 aerosol mass concentrations , 1999 .

[3]  T. Eck,et al.  Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols , 1999 .

[4]  T. Eck,et al.  Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements , 2000 .

[5]  T. Eck,et al.  Bimodal size distribution influences on the variation of Angstrom derivatives in spectral and optical depth space , 2001 .

[6]  Majid Ezzati,et al.  For Personal Use. Only Reproduce with Permission from the Lancet Publishing Group , 2022 .

[7]  R. Burnett,et al.  Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. , 2002, JAMA.

[8]  T. Eck,et al.  Spectral discrimination of coarse and fine mode optical depth , 2003 .

[9]  William L. Smith,et al.  AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems , 2003, IEEE Trans. Geosci. Remote. Sens..

[10]  I. Brooks,et al.  Finding Boundary Layer Top: Application of a Wavelet Covariance Transform to Lidar Backscatter Profiles , 2003 .

[11]  F. Gilliland,et al.  Ambient Air Pollution and Atherosclerosis in Los Angeles , 2004, Environmental health perspectives.

[12]  Oleg Dubovik,et al.  Inferring black carbon content and specific absorption from Aerosol Robotic Network (AERONET) aerosol retrievals , 2005 .

[13]  D. Chu,et al.  Testing the MODIS Satellite Retrieval of Aerosol Fine-Mode Fraction , 2005 .

[14]  J. M. Baldasano,et al.  Mixed-Layer Depth Determination in the Barcelona Coastal Area From Regular Lidar Measurements: Methods, Results and Limitations , 2006 .

[15]  Yinon Rudich,et al.  Optical properties of absorbing and non-absorbing aerosols retrieved by cavity ring down (CRD) spectroscopy , 2006 .

[16]  E. Vermote,et al.  Second‐generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance , 2007 .

[17]  Kazuhiko Ito,et al.  A land use regression for predicting fine particulate matter concentrations in the New York City region , 2007 .

[18]  Tao Wang,et al.  [Inter-comparison of WPS-TEOM-MOUDI and investigation on particle density]. , 2007, Huan jing ke xue= Huanjing kexue.

[19]  Stefan Emeis,et al.  Multiple atmospheric layering and mixing-layer height in the Inn valley observed by remote sensing , 2007 .

[20]  Nobuo Sugimoto,et al.  Influences of relative humidity and particle chemical composition on aerosol scattering properties during the 2006 PRD campaign , 2008 .

[21]  Zhou Jun LIDAR exploration of atmospheric boundary layer over downtown of Beijing in summer , 2008 .

[22]  C. Chan,et al.  Air pollution in mega cities in China , 2008 .

[23]  Stefan Emeis,et al.  Surface-based remote sensing of the mixing-layer height a review , 2008 .

[24]  Sundar A. Christopher,et al.  Seven year particulate matter air quality assessment from surface and satellite measurements , 2008 .

[25]  Yang Liu,et al.  Estimating Regional Spatial and Temporal Variability of PM2.5 Concentrations Using Satellite Data, Meteorology, and Land Use Information , 2009, Environmental health perspectives.

[26]  Yang Liu,et al.  Limitations of Remotely Sensed Aerosol as a Spatial Proxy for Fine Particulate Matter , 2009, Environmental health perspectives.

[27]  A. Kokhanovsky,et al.  Determination of particulate matter vertical columns using satellite observations , 2009 .

[28]  Jun Wang,et al.  Improved algorithm for MODIS satellite retrievals of aerosol optical thickness over land in dusty atmosphere: Implications for air quality monitoring in China , 2010 .

[29]  Didier Tanré,et al.  Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations , 2010 .

[30]  T. Eck,et al.  Global evaluation of the Collection 5 MODIS dark-target aerosol products over land , 2010 .

[31]  M. Brauer,et al.  Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth: Development and Application , 2010, Environmental health perspectives.

[32]  D. Jacob,et al.  Synthesis of satellite (MODIS), aircraft (ICARTT), and surface (IMPROVE, EPA‐AQS, AERONET) aerosol observations over eastern North America to improve MODIS aerosol retrievals and constrain surface aerosol concentrations and sources , 2010 .

[33]  A. Peters,et al.  Particulate Matter Air Pollution and Cardiovascular Disease: An Update to the Scientific Statement From the American Heart Association , 2010, Circulation.

[34]  F. Bréon,et al.  Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: the PARASOL mission , 2011 .

[35]  A. Scott Denning,et al.  Estimates of North American summertime planetary boundary layer depths derived from space-borne lidar , 2012 .

[36]  B. Coull,et al.  Use of satellite-based aerosol optical depth and spatial clustering to predict ambient PM2.5 concentrations. , 2012, Environmental research.

[37]  Bert Brunekreef,et al.  Development of Land Use Regression models for PM(2.5), PM(2.5) absorbance, PM(10) and PM(coarse) in 20 European study areas; results of the ESCAPE project. , 2012, Environmental science & technology.

[38]  J. Fischer,et al.  Retrieving aerosol height from the oxygen A band: a fast forward operator and sensitivity study concerning spectral resolution, instrumental noise, and surface inhomogeneity , 2013 .

[39]  Daniel Krewski,et al.  Estimates of global mortality attributable to particulate air pollution using satellite imagery. , 2013, Environmental research.

[40]  Ilias Manolis,et al.  The MetOp second generation 3MI instrument , 2013, Remote Sensing.

[41]  Jun Wang,et al.  Constraints on aerosol sources using GEOS‐Chem adjoint and MODIS radiances, and evaluation with multisensor (OMI, MISR) data , 2013 .

[42]  Zhang Wanchun,et al.  Observation of atmospheric boundary layer height by ground-based LiDAR during haze days , 2013 .

[43]  Robert C. Levy,et al.  Optimal estimation for global ground‐level fine particulate matter concentrations , 2013 .

[44]  Zhengqiang Li,et al.  Aerosol physical and chemical properties retrieved from ground-based remote sensing measurements during heavy haze days in Beijing winter , 2013 .

[45]  Thomas F. Eck,et al.  New approach to monitor transboundary particulate pollution over Northeast Asia , 2013 .

[46]  Yang Liu,et al.  Estimating ground-level PM2.5 in China using satellite remote sensing. , 2014, Environmental science & technology.

[47]  William L. Crosson,et al.  Estimating Ground-Level PM(sub 2.5) Concentrations in the Southeastern United States Using MAIAC AOD Retrievals and a Two-Stage Model , 2014 .

[48]  Michael J. Garay,et al.  Improving satellite-retrieved aerosol microphysical properties using GOCART data , 2014 .

[49]  Ying Zhang,et al.  Aerosol Column Size Distribution and Water Uptake Observed during a Major Haze Outbreak over Beijing on January 2013 , 2014 .

[50]  Oleg Dubovik,et al.  GRASP: a versatile algorithm for characterizing the atmosphere , 2014 .

[51]  Jiansheng Wu,et al.  Applying land use regression model to estimate spatial variation of PM2.5 in Beijing, China , 2015, Environmental Science and Pollution Research.

[52]  Alfred Wiedensohler,et al.  Influence of water uptake on the aerosol particle light scattering coefficients of the Central European aerosol , 2014 .

[53]  Dong Liu,et al.  Development of dual-wavelength Mie polarization Raman lidar for aerosol and cloud vertical structure probing , 2014, Other Conferences.

[54]  Xiong Liu,et al.  A numerical testbed for remote sensing of aerosols, and its demonstration for evaluating retrieval synergy from a geostationary satellite constellation of GEO-CAPE and GOES-R , 2014 .

[55]  Kebin He,et al.  Estimating long-term PM2.5 concentrations in China using satellite-based aerosol optical depth and a chemical transport model , 2015 .

[56]  Zhengqiang Li,et al.  Remote sensing of atmospheric fine particulate matter (PM2.5) mass concentration near the ground from satellite observation , 2015 .

[57]  Li Zhengqian,et al.  Sun-sky radiometer observation network with the extension of multi-wavelength polarization measurements , 2015 .

[58]  Guangming Zeng,et al.  Land use regression models coupled with meteorology to model spatial and temporal variability of NO2 and PM10 in Changsha, China , 2015 .

[59]  J. Fung,et al.  Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5 , 2015 .

[60]  Zhengqiang Li,et al.  Comparison of aerosol properties over Beijing and Kanpur: Optical, physical properties and aerosol component composition retrieved from 12 years ground‐based Sun‐sky radiometer remote sensing data , 2015 .