Optimal control analysis in the chemotherapy of IgG multiple myeloma.

[1]  M. Kim,et al.  Optimal control of multiplicative control systems arising from cancer therapy , 1975 .

[2]  G. W. Swan,et al.  Some strategies for harvesting a single species , 1975, Bulletin of mathematical biology.

[3]  W. E. Gutteridge FUNDAMENTALS OF CHEMOTHERAPY , 1974, The Ulster Medical Journal.

[4]  N. Shapiro,et al.  Tumor growth and chemotherapy: Mathematical methods, computer simulations, and experimental foundations , 1973 .

[5]  S. Salmon,et al.  Kinetics of tumor growth and regression in IgG multiple myeloma. , 1972, The Journal of clinical investigation.

[6]  W J Jusko,et al.  Pharmacodynamics of chemotherapeutic effects: dose-time-response relationships for phase-nonspecific agents. , 1971, Journal of pharmaceutical sciences.

[7]  A. Kahn,et al.  Myelomatosis: Fundamentals and Clinical Features , 1971 .

[8]  H. H. Lloyd,et al.  Kinetic parameters and growth curves for experimental tumor systems. , 1970, Cancer chemotherapy reports.

[9]  J. Waldenström Diagnosis and Treatment of Multiple Myeloma , 1970 .

[10]  H. Skipper Improvement of the model systems. , 1969, Cancer research.

[11]  M. C. Berenbaum,et al.  Dose-response curves for agents that impair cell reproductive integrity. The relation between dose-response curves and the design of selective regimens in cancer chemotherapy. , 1969, British Journal of Cancer.

[12]  G. Hahn State vector description of the proliferation of mammalian cells in tissue culture. I. Exponential growth. , 1966, Biophysical journal.

[13]  G. Hahn A formalism describing the kinetics of some mammalian cell populations , 1970 .

[14]  G. Leitmann An Introduction To Optimal Control , 1966 .