METAPLECTIC OPERATORS ON ℂn
暂无分享,去创建一个
Michiel Hazewinkel | Hans G. Feichtinger | Norbert Kaiblinger | Ewa Matusiak | Markus Neuhauser | H. Feichtinger | M. Hazewinkel | E. Matusiak | Norbert Kaiblinger | M. Neuhauser
[1] R. Ranga Rao,et al. On some explicit formulas in the theory of Weil representation , 1993 .
[2] Fast Quantum Maps , 1998, math-ph/9805012.
[3] Peter G. Casazza,et al. Chirps on finite cyclic groups , 2005, SPIE Optics + Photonics.
[4] Apostolos Vourdas,et al. Quantum systems with finite Hilbert space , 2004 .
[5] Thomas Strohmer,et al. Numerical algorithms for discrete Gabor expansions , 1998 .
[6] M. Vergne,et al. The Weil representation, Maslov index, and theta series , 1980 .
[7] H. Feichtinger,et al. Gabor wavelets and the Heisenberg group: Gabor expansions and short time Fourier transform from the group theoretical point of view , 1993 .
[8] G. Folland. Harmonic analysis in phase space , 1989 .
[9] O. Christensen. An introduction to frames and Riesz bases , 2002 .
[10] Johannes Grassberger,et al. A note on representations of the finite Heisenberg group and sums of greatest common divisors , 2001, Discret. Math. Theor. Comput. Sci..
[11] Shamgar Gurevich,et al. The geometric Weil representation , 2006 .
[12] Srinivasa Varadhan,et al. FINITE APPROXIMATIONS TO QUANTUM SYSTEMS , 1994 .
[13] Norbert Kaiblinger,et al. Approximation of the Fourier Transform and the Dual Gabor Window , 2005 .
[14] H. Reiter. Metaplectic Groups and Segal Algebras , 1989 .
[15] P. Oonincx,et al. On the Integral Representations for Metaplectic Operators , 2002 .
[16] Gitta Kutyniok,et al. Wilson Bases for General Time-Frequency Lattices , 2005, SIAM J. Math. Anal..
[17] Markus Neuhauser,et al. An explicit construction of the metaplectic representation over a finite field. , 2002 .
[18] Characters and contact transformations , 1981 .
[19] L. Baggett,et al. Multiplier representations of abelian groups , 1973 .
[20] A. Weil. Sur certains groupes d'opérateurs unitaires , 1964 .
[21] D. M. Appleby. Symmetric informationally complete–positive operator valued measures and the extended Clifford group , 2005 .
[22] Karlheinz Gröchenig,et al. Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.
[23] S. Lang. The Weil Representation , 1985 .
[24] Shun’ichi Tanaka,et al. Construction and classification of irreducible representations of special linear group of the second order over a finite field , 1967 .