METAPLECTIC OPERATORS ON ℂn

textabstractThe metaplectic representation describes a class of automorphism of the Heisenberg group H = H(G), defined for a locally compact abelian group G. For $G = R^d$, H is the usual Heisenberg group. For the case when G is the finite cyclic group $Z^n$, only partial constructions are known. Here we present new results for this case and we obtain an explicit construction of the metaplectic operators on $C^n$. We also include applications to Gabor frames.

[1]  R. Ranga Rao,et al.  On some explicit formulas in the theory of Weil representation , 1993 .

[2]  Fast Quantum Maps , 1998, math-ph/9805012.

[3]  Peter G. Casazza,et al.  Chirps on finite cyclic groups , 2005, SPIE Optics + Photonics.

[4]  Apostolos Vourdas,et al.  Quantum systems with finite Hilbert space , 2004 .

[5]  Thomas Strohmer,et al.  Numerical algorithms for discrete Gabor expansions , 1998 .

[6]  M. Vergne,et al.  The Weil representation, Maslov index, and theta series , 1980 .

[7]  H. Feichtinger,et al.  Gabor wavelets and the Heisenberg group: Gabor expansions and short time Fourier transform from the group theoretical point of view , 1993 .

[8]  G. Folland Harmonic analysis in phase space , 1989 .

[9]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[10]  Johannes Grassberger,et al.  A note on representations of the finite Heisenberg group and sums of greatest common divisors , 2001, Discret. Math. Theor. Comput. Sci..

[11]  Shamgar Gurevich,et al.  The geometric Weil representation , 2006 .

[12]  Srinivasa Varadhan,et al.  FINITE APPROXIMATIONS TO QUANTUM SYSTEMS , 1994 .

[13]  Norbert Kaiblinger,et al.  Approximation of the Fourier Transform and the Dual Gabor Window , 2005 .

[14]  H. Reiter Metaplectic Groups and Segal Algebras , 1989 .

[15]  P. Oonincx,et al.  On the Integral Representations for Metaplectic Operators , 2002 .

[16]  Gitta Kutyniok,et al.  Wilson Bases for General Time-Frequency Lattices , 2005, SIAM J. Math. Anal..

[17]  Markus Neuhauser,et al.  An explicit construction of the metaplectic representation over a finite field. , 2002 .

[18]  Characters and contact transformations , 1981 .

[19]  L. Baggett,et al.  Multiplier representations of abelian groups , 1973 .

[20]  A. Weil Sur certains groupes d'opérateurs unitaires , 1964 .

[21]  D. M. Appleby Symmetric informationally complete–positive operator valued measures and the extended Clifford group , 2005 .

[22]  Karlheinz Gröchenig,et al.  Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.

[23]  S. Lang The Weil Representation , 1985 .

[24]  Shun’ichi Tanaka,et al.  Construction and classification of irreducible representations of special linear group of the second order over a finite field , 1967 .