POLARBEAR-2: an instrument for CMB polarization measurements

POLARBEAR-2 (PB-2) is a cosmic microwave background (CMB) polarization experiment that will be located in the Atacama highland in Chile at an altitude of 5200 m. Its science goals are to measure the CMB polarization signals originating from both primordial gravitational waves and weak lensing. PB-2 is designed to measure the tensor to scalar ratio, r, with precision σ(r) > 0:01, and the sum of neutrino masses, Σmz, with σ(Σmv) < 90 meV. To achieve these goals, PB-2 will employ 7588 transition-edge sensor bolometers at 95 GHz and 150 GHz, which will be operated at the base temperature of 250 mK. Science observations will begin in 2017.

G. P. Teply | J. P. Kaufman | B. G. Keating | J. Borrill | A. Cukierman | T. Elleflot | J. Errard | N. Halverson | M. Hasegawa | C. Hill | H. Nishino | R. Stompor | A. Suzuki | C. L. Reichardt | M. A. Dobbs | W. L. Holzapfel | A. T. Lee | K. Arnold | F. Matsuda | G. M. Rebeiz | G. Hall | T. de Haan | N. Whitehorn | J. Peloton | H. Paar | M. Hazumi | A. Jaffe | Z. Kermish | N. Miller | O. Zahn | R. Dünner | K. Hattori | O. Jeong | J. Montgomery | L. Howe | A. J. Gilbert | A. Kusaka | D. Barron | D. Boettger | Y. Chinone | G. Fabbian | M. Le Jeune | C. Ross | P. Siritanasak | N. Stebor | T. Tomaru | N. Goeckner-Wald | Y. Hori | Y. Inoue | F. Irie | S. Takada | P. Ade | Y. Akiba | C. Aleman | C. Baccigalupi | B. Barch | A. Bender | S. Chapman | A. Ducout | S. Feeney | C. Feng | G. Fuller | J. Groh | T. Hamada | G. Jaehnig | N. Katayama | K. Kazemzadeh | R. Keskitalo | T. S. Kisner | D. Leon | E. V. Linder | L. Lowry | T. Matsumura | K. Mizukami | M. Navaroli | D. Poletti | G. Puglisi | C. R. Raum | P. L. Richards | K. M. Rotermund | Y. Segawa | B. D. Sherwin | I. Shirley | J. Suzuki | O. Tajima | S. Takatori | A. Tikhomirov | A. Zahn | G. Jaehnig | C. Baccigalupi | N. Katayama | A. Lee | P. Ade | J. Borrill | A. Jaffe | P. Richards | R. Stompor | L. Howe | A. Bender | A. Cukierman | M. Dobbs | A. Gilbert | J. Groh | N. Halverson | W. Holzapfel | O. Jeong | I. Shirley | A. Suzuki | N. Whitehorn | T. Tomaru | M. Hazumi | O. Tajima | T. Kisner | E. Linder | O. Zahn | R. Keskitalo | S. Feeney | A. Ducout | F. Irie | G. Rebeiz | G. Puglisi | Praweeen Siritanasak | A. Kusaka | B. Keating | T. de Haan | H. Paar | A. Tikhomirov | Y. Hori | H. Nishino | C. Reichardt | G. Fuller | Z. Kermish | K. Rotermund | K. Hattori | J. Kaufman | G. Teply | B. Sherwin | R. Dünner | K. Arnold | D. Barron | D. Boettger | Y. Chinone | J. Errard | N. Goeckner-wald | M. Hasegawa | C. Hill | D. Leon | L. Lowry | F. Matsuda | M. Navaroli | J. Peloton | D. Poletti | C. Raum | M. Le Jeune | Y. Inoue | T. Matsumura | Y. Akiba | T. Elleflot | K. Mizukami | Y. Segawa | S. Takada | C. Feng | N. Miller | J. Suzuki | K. Kazemzadeh | S. Chapman | G. Hall | S. Takatori | G. Fabbian | T. Hamada | N. Stebor | J. Montgomery | C. Aleman | B. Barch | C. Ross | A. Zahn

[1]  Aritoki Suzuki,et al.  Multichroic Bolometric Detector Architecture for Cosmic Microwave Background Polarimetry Experiments , 2013 .

[2]  A. Cukierman,et al.  The Broadband Anti-reflection Coated Extended Hemispherical Silicon Lenses for Polarbear-2 Experiment , 2016 .

[3]  O. Tajima,et al.  Radio-transparent multi-layer insulation for radiowave receivers. , 2013, The Review of scientific instruments.

[4]  P. A. R. Ade,et al.  Thermal and optical characterization for POLARBEAR-2 optical system , 2014, Astronomical Telescopes and Instrumentation.

[5]  Gabriel M. Rebeiz,et al.  Multi-Chroic Dual-Polarization Bolometric Detectors for Studies of the Cosmic Microwave Background , 2014 .

[6]  Katsuhiko Sato,et al.  First-order phase transition of a vacuum and the expansion of the Universe , 1981 .

[7]  Darcy Barron,et al.  Performance of a 4 Kelvin pulse-tube cooled cryostat with dc SQUID amplifiers for bolometric detector testing , 2013 .

[8]  Albert Stebbins,et al.  A Probe of Primordial Gravity Waves and Vorticity , 1997 .

[9]  Neil Rowlands,et al.  Digital frequency domain multiplexing readout electronics for the next generation of millimeter telescopes , 2014, Astronomical Telescopes and Instrumentation.

[10]  Adrian T. Lee,et al.  Broadband Plasma-Sprayed Anti-reflection Coating for Millimeter-Wave Astrophysics Experiments , 2016 .

[11]  P. Ade,et al.  The Simons Array CMB polarization experiment , 2016, Astronomical Telescopes + Instrumentation.

[12]  Yuki Inoue Development of POLARBEAR-2 receiver system for cosmic microwave background polarization experiment , 2016 .

[13]  Brian Keating,et al.  Design and development of an ambient-temperature continuously-rotating achromatic half-wave plate for CMB polarization modulation on the POLARBEAR-2 experiment , 2016, Astronomical Telescopes + Instrumentation.

[14]  J. J. Bock,et al.  BICEP3: a 95GHz refracting telescope for degree-scale CMB polarization , 2014, Astronomical Telescopes and Instrumentation.

[15]  C. Dragone,et al.  Offset multireflector antennas with perfect pattern symmetry and polarization discrimination , 1978, The Bell System Technical Journal.

[16]  Graeme Smecher,et al.  Adaptation of frequency-domain readout for Transition Edge Sensor bolometers for the POLARBEAR-2 Cosmic Microwave Background experiment , 2013, 1306.1869.

[17]  M. Akagawa,et al.  Offset dual reflector antenna , 1976 .

[18]  Adrian T. Lee,et al.  Cryogenic infrared filter made of alumina for use at millimeter wavelength. , 2013, Applied optics.

[19]  Adrian T. Lee,et al.  Epoxy-based broadband antireflection coating for millimeter-wave optics. , 2013, Applied optics.

[20]  Graeme Smecher,et al.  The POLARBEAR-2 Experiment , 2014 .

[21]  A. Guth Inflationary universe: A possible solution to the horizon and flatness problems , 1981 .