A survey on algorithmic approaches for solving tourist trip design problems

The tourist trip design problem (TTDP) refers to a route-planning problem for tourists interested in visiting multiple points of interest (POIs). TTDP solvers derive daily tourist tours, i.e., ordered visits to POIs, which respect tourist constraints and POIs attributes. The main objective of the problem discussed is to select POIs that match tourist preferences, thereby maximizing tourist satisfaction, while taking into account a multitude of parameters and constraints (e.g., distances among POIs, visiting time required for each POI, POIs visiting days/hours, entrance fees, weather conditions) and respecting the time available for sightseeing on a daily basis. The aim of this work is to survey models, algorithmic approaches and methodologies concerning tourist trip design problems. Recent approaches are examined, focusing on problem models that best capture a multitude of realistic POIs attributes and user constraints; further, several interesting TTDP variants are investigated. Open issues and promising prospects in tourist trip planning research are also discussed.

[1]  Jin Li,et al.  Model and Algorithm for Time-Dependent Team Orienteering Problem , 2011 .

[2]  Fred W. Glover,et al.  Multi-objective Meta-heuristics for the Traveling Salesman Problem with Profits , 2008, J. Math. Model. Algorithms.

[3]  Kenneth Sörensen,et al.  The travelling salesperson problem with hotel selection , 2012, J. Oper. Res. Soc..

[4]  Nenad Mladenović,et al.  An Introduction to Variable Neighborhood Search , 1997 .

[5]  Zhenping Li,et al.  The Team Orienteering Problem with Capacity Constraint and Time Window , 2011 .

[6]  Richard F. Hartl,et al.  Metaheuristics for the bi-objective orienteering problem , 2009, Swarm Intelligence.

[7]  Alain Hertz,et al.  The capacitated team orienteering and profitable tour problems , 2007, J. Oper. Res. Soc..

[8]  Jürgen Dorn,et al.  A Tabu Search approach for Multi Constrained Team Orienteering Problem and its application in touristic trip planning , 2012, 2012 12th International Conference on Hybrid Intelligent Systems (HIS).

[9]  Qiwen Wang,et al.  Using artificial neural networks to solve the orienteering problem , 1995, Ann. Oper. Res..

[10]  D. Gavalas,et al.  Web application for recommending personalised mobile tourist routes , 2012, IET Softw..

[11]  Dirk Van Oudheusden,et al.  The Multiconstraint Team Orienteering Problem with Multiple Time Windows , 2010, Transp. Sci..

[12]  Shih-Wei Lin,et al.  A simulated annealing heuristic for the team orienteering problem with time windows , 2012, Eur. J. Oper. Res..

[13]  Deniz Aksen,et al.  Customer Selection and Profit Maximization in Vehicle Routing Problems , 2005, OR.

[14]  Olatz Arbelaitz,et al.  Integrating public transportation in personalised electronic tourist guides , 2013, Comput. Oper. Res..

[15]  Pieter Vansteenwegen,et al.  Planning in tourism and public transportation , 2009, 4OR.

[16]  Duc-Cuong Dang,et al.  An effective PSO-inspired algorithm for the team orienteering problem , 2013, Eur. J. Oper. Res..

[17]  Silvano Martello,et al.  Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization , 2012 .

[18]  Maria Grazia Speranza,et al.  Optimal solutions for routing problems with profits , 2013, Discret. Appl. Math..

[19]  Bruce L. Golden,et al.  The team orienteering problem , 1996 .

[20]  Tom M. Cavalier,et al.  A heuristic for the multiple tour maximum collection problem , 1994, Comput. Oper. Res..

[21]  Richard F. Hartl,et al.  Heuristics for the multi-period orienteering problem with multiple time windows , 2010, Comput. Oper. Res..

[22]  Esther M. Arkin,et al.  Approximations for minimum and min-max vehicle routing problems , 2006, J. Algorithms.

[23]  Michel Gendreau,et al.  An exact algorithm for team orienteering problems , 2007, 4OR.

[24]  Marius M. Solomon,et al.  Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints , 1987, Oper. Res..

[25]  John N. Tsitsiklis,et al.  Special cases of traveling salesman and repairman problems with time windows , 1992, Networks.

[26]  Gerhard Reinelt,et al.  TSPLIB - A Traveling Salesman Problem Library , 1991, INFORMS J. Comput..

[27]  Paolo Toth,et al.  State-space relaxation procedures for the computation of bounds to routing problems , 1981, Networks.

[28]  Mark H. Karwan,et al.  An Optimal Algorithm for the Orienteering Tour Problem , 1992, INFORMS J. Comput..

[29]  David R. Karger,et al.  Approximation algorithms for orienteering and discounted-reward TSP , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[30]  Dirk Van Oudheusden,et al.  The planning of cycle trips in the province of East Flanders , 2011 .

[31]  G. V. Berghe,et al.  A Greedy Randomised Adaptive Search Procedure for the Team Orienteering Problem , 2008 .

[32]  David P. Williamson,et al.  A note on the prize collecting traveling salesman problem , 1993, Math. Program..

[33]  Gilbert Laporte,et al.  The orienteering problem with variable profits , 2013, Networks.

[34]  Bernd Ludwig,et al.  ROSE: assisting pedestrians to find preferred events and comfortable public transport connections , 2009, Mobility Conference.

[35]  Cong Yu,et al.  Automatic construction of travel itineraries using social breadcrumbs , 2010, HT '10.

[36]  Amin Saberi,et al.  An O(log n/ log log n)-approximation algorithm for the asymmetric traveling salesman problem , 2010, SODA '10.

[37]  Mark S. Daskin,et al.  The orienteering problem with stochastic profits , 2008 .

[38]  Dirk Van Oudheusden,et al.  Iterated local search for the team orienteering problem with time windows , 2009, Comput. Oper. Res..

[39]  Santosh S. Vempala,et al.  New Approximation Guarantees for Minimum-Weight k-Trees and Prize-Collecting Salesmen , 1999, SIAM J. Comput..

[40]  Nacima Labadie,et al.  The Team Orienteering Problem with Time Windows: An LP-based Granular Variable Neighborhood Search , 2012, Eur. J. Oper. Res..

[41]  Ram Ramesh,et al.  An efficient four-phase heuristic for the generalized orienteering problem , 1991, Comput. Oper. Res..

[42]  Claudia Archetti,et al.  Chapter 12: Arc Routing Problems with Profits , 2013 .

[43]  Sanjeev Arora,et al.  A 2 + ɛ approximation algorithm for the k-MST problem , 2000, SODA '00.

[44]  Charalampos Konstantopoulos,et al.  Cluster-Based Heuristics for the Team Orienteering Problem with Time Windows , 2013, SEA.

[45]  M. Resende,et al.  A probabilistic heuristic for a computationally difficult set covering problem , 1989 .

[46]  Giri Narasimhan,et al.  Resource-constrained geometric network optimization , 1998, SCG '98.

[47]  Emmanouil E. Zachariadis,et al.  Local search for the undirected capacitated arc routing problem with profits , 2011, Eur. J. Oper. Res..

[48]  Michel Gendreau,et al.  Traveling Salesman Problems with Profits , 2005, Transp. Sci..

[49]  Greg N. Frederickson,et al.  Approximation Algorithms for the Traveling Repairman and Speeding Deliveryman Problems , 2009, Algorithmica.

[50]  Roberto Montemanni,et al.  An ant colony system for team orienteering problems with time windows , 2023, 2305.07305.

[51]  Bruce L. Golden,et al.  A fast and effective heuristic for the orienteering problem , 1996 .

[52]  Dirk Van Oudheusden,et al.  A Path Relinking approach for the Team Orienteering Problem , 2010, Comput. Oper. Res..

[53]  Jean-François Cordeau,et al.  A parallel iterated tabu search heuristic for vehicle routing problems , 2012, Comput. Oper. Res..

[54]  Giovanni Righini,et al.  New dynamic programming algorithms for the resource constrained elementary shortest path problem , 2008, Networks.

[55]  Elise Miller-Hooks,et al.  A TABU search heuristic for the team orienteering problem , 2005, Comput. Oper. Res..

[56]  Nitish Korula,et al.  Approximation algorithms for network design and orienteering , 2010 .

[57]  Andrzej Lingas,et al.  Approximation algorithms for time-dependent orienteering , 2001, Inf. Process. Lett..

[58]  Charalampos Konstantopoulos,et al.  Efficient Heuristics for the Time Dependent Team Orienteering Problem with Time Windows , 2014, ICAA.

[59]  Nacima Labadie,et al.  Hybridized evolutionary local search algorithm for the team orienteering problem with time windows , 2011, J. Heuristics.

[60]  Gilbert Laporte,et al.  Two exact algorithms for the distance-constrained vehicle routing problem , 1984, Networks.

[61]  Michel Gendreau,et al.  A tabu search heuristic for the undirected selective travelling salesman problem , 1998, Eur. J. Oper. Res..

[62]  Bruce L. Golden,et al.  The effective application of a new approach to the generalized orienteering problem , 2010, J. Heuristics.

[63]  B. Golden,et al.  A multifaceted heuristic for the orienteering problem , 1988 .

[64]  Olatz Arbelaitz,et al.  Evaluation of Intelligent Routes for Personalised Electronic Tourist Guides , 2012, ENTER.

[65]  Dirk Van Oudheusden,et al.  The City Trip Planner: An expert system for tourists , 2011, Expert Syst. Appl..

[66]  Dirk Cattrysse,et al.  A variable neighborhood search method for the orienteering problem with hotel selection , 2013 .

[67]  Nacima Labadie,et al.  An Effective Hybrid Evolutionary Local Search for Orienteering and Team Orienteering Problems with Time Windows , 2010, PPSN.

[68]  Teodor Gabriel Crainic,et al.  Parallel Solution Methods for Vehicle Routing Problems , 2008 .

[69]  Dirk Van Oudheusden,et al.  A guided local search metaheuristic for the team orienteering problem , 2009, Eur. J. Oper. Res..

[70]  Gilbert Laporte,et al.  The selective travelling salesman problem , 1990, Discret. Appl. Math..

[71]  R. Vohra,et al.  The Orienteering Problem , 1987 .

[72]  F. Maffioli,et al.  On prize-collecting tours and the asymmetric travelling salesman problem , 1995 .

[73]  Damianos Gavalas,et al.  An innovative mobile electronic tourist guide application , 2009, Personal and Ubiquitous Computing.

[74]  M. Goodchild,et al.  The Multiobjective Vending Problem: A Generalization of the Travelling Salesman Problem , 1988 .

[75]  Giovanni Righini,et al.  Decremental state space relaxation strategies and initialization heuristics for solving the Orienteering Problem with Time Windows with dynamic programming , 2009, Comput. Oper. Res..

[76]  Ángel Corberán,et al.  The Team Orienteering Arc Routing Problem , 2014, Transp. Sci..

[77]  Ke Chen,et al.  The orienteering problem in the plane revisited , 2006, SCG '06.

[78]  Teodor Gabriel Crainic,et al.  Parallel Meta-Heuristics , 2010 .

[79]  Chandra Chekuri,et al.  Improved algorithms for orienteering and related problems , 2008, SODA '08.

[80]  Alain Hertz,et al.  The undirected capacitated arc routing problem with profits , 2010, Comput. Oper. Res..

[81]  R. Malaka,et al.  DEEP MAP: Challenging IT Research In The Framework Of A Tourist Information System , 2000 .

[82]  R. Ravi,et al.  Approximation algorithms for stochastic orienteering , 2012, SODA.

[83]  Chien-Chih Yu,et al.  Personalized Location-Based Recommendation Services for Tour Planning in Mobile Tourism Applications , 2009, EC-Web.

[84]  Dirk Van Oudheusden,et al.  The Mobile Tourist Guide: An OR Opportunity , 2007, OR Insight.

[85]  Alain Hertz,et al.  Metaheuristics for the team orienteering problem , 2005, J. Heuristics.

[86]  Michel Gendreau,et al.  A tabu search heuristic for periodic and multi-depot vehicle routing problems , 1997, Networks.

[87]  Ángel Corberán,et al.  A matheuristic for the Team Orienteering Arc Routing Problem , 2015, Eur. J. Oper. Res..

[88]  Daoli Zhu,et al.  Study on the Time-Dependent Orienteering Problem , 2010, 2010 International Conference on E-Product E-Service and E-Entertainment.

[89]  Elena Fernández,et al.  Solving the Prize-collecting Rural Postman Problem , 2009, Eur. J. Oper. Res..

[90]  Sarah S. Lam,et al.  Discrete particle swarm optimization for the team orienteering problem , 2011, Memetic Comput..

[91]  T. Tsiligirides,et al.  Heuristic Methods Applied to Orienteering , 1984 .

[92]  M. G. Kantor,et al.  The Orienteering Problem with Time Windows , 1992 .

[93]  Patrick De Causmaecker,et al.  Tour Suggestion for Outdoor Activities , 2013, W2GIS.

[94]  Xia Wang,et al.  Using a Genetic Algorithm to Solve the Generalized Orienteering Problem , 2008 .

[95]  G. V. Berghe,et al.  Metaheuristics for Tourist Trip Planning , 2009 .

[96]  Keith Cheverst,et al.  The role of adaptive hypermedia in a context-aware tourist GUIDE , 2002, CACM.

[97]  Ali Ekici,et al.  Multiple agents maximum collection problem with time dependent rewards , 2013, Comput. Ind. Eng..

[98]  Ray Deitch,et al.  The one-period bus touring problem: Solved by an effective heuristic for the orienteering tour problem and improvement algorithm , 2000, Eur. J. Oper. Res..

[99]  Pieter Vansteenwegen,et al.  Tourist Trip Planning Functionalities: State-of-the-Art and Future , 2010, ICWE Workshops.

[100]  Dirk Van Oudheusden,et al.  The orienteering problem: A survey , 2011, Eur. J. Oper. Res..

[101]  King-Wah Pang,et al.  An adaptive parallel route construction heuristic for the vehicle routing problem with time windows constraints , 2011, Expert Syst. Appl..

[102]  Ling Chen,et al.  A parallel ant colony algorithm on massively parallel processors and its convergence analysis for the travelling salesman problem , 2012, Inf. Sci..

[103]  Chung-Lun Li,et al.  On the Distance Constrained Vehicle Routing Problem , 1992, Oper. Res..

[104]  Michel Gendreau,et al.  The Profitable Arc Tour Problem: Solution with a Branch-and-Price Algorithm , 2005, Transp. Sci..

[105]  Olatz Arbelaitz,et al.  Intelligent Routing System for a Personalised Electronic Tourist Guide , 2009, ENTER.

[106]  Farhad Samadzadegan,et al.  Time-dependent personal tour planning and scheduling in metropolises , 2011, Expert Syst. Appl..

[107]  Chandra Chekuri,et al.  A recursive greedy algorithm for walks in directed graphs , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[108]  Chien-Cheng Tseng,et al.  Next Wave in Robotics - 14th FIRA RoboWorld Congress, FIRA 2011, Kaohsiung, Taiwan, August 26-30, 2011. Proceedings , 2011, FIRA RoboWorld Congress.

[109]  Walter J. Savitch,et al.  Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..

[110]  David P. Williamson,et al.  A general approximation technique for constrained forest problems , 1992, SODA '92.

[111]  Steven E. Butt,et al.  An optimal solution procedure for the multiple tour maximum collection problem using column generation , 1999, Comput. Oper. Res..

[112]  Sanjeev Arora,et al.  A 2+epsilon approximation algorithm for the k-MST problem , 2000, SODA.

[113]  Andrew Lim,et al.  An iterative three-component heuristic for the team orienteering problem with time windows , 2014, Eur. J. Oper. Res..

[114]  Adam Meyerson,et al.  Approximation algorithms for deadline-TSP and vehicle routing with time-windows , 2004, STOC '04.

[115]  Lixin Tang,et al.  Iterated local search algorithm based on very large-scale neighborhood for prize-collecting vehicle routing problem , 2006 .

[116]  Damianos Gavalas,et al.  Electronic mobile guides: a survey , 2010, Personal and Ubiquitous Computing.

[117]  Egon Balas,et al.  The prize collecting traveling salesman problem , 1989, Networks.

[118]  Sanjeev Arora,et al.  Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems , 1998, JACM.

[119]  Michel Gendreau,et al.  An exact epsilon-constraint method for bi-objective combinatorial optimization problems: Application to the Traveling Salesman Problem with Profits , 2009, Eur. J. Oper. Res..

[120]  Duc-Cuong Dang,et al.  A memetic algorithm for the team orienteering problem , 2008, 4OR.

[121]  Matteo Fischetti,et al.  Solving the Orienteering Problem through Branch-and-Cut , 1998, INFORMS J. Comput..

[122]  Olatz Arbelaitz,et al.  Personalized Tourist Route Generation , 2010, ICWE Workshops.

[123]  R. Ravi,et al.  The Directed Orienteering Problem , 2011, Algorithmica.

[124]  Joseph S. B. Mitchell,et al.  Guillotine Subdivisions Approximate Polygonal Subdivisions: A Simple Polynomial-Time Approximation Scheme for Geometric TSP, k-MST, and Related Problems , 1999, SIAM J. Comput..

[125]  R. Ravi,et al.  Approximation algorithms for distance constrained vehicle routing problems , 2012, Networks.

[126]  S. Morito,et al.  AN ALGORITHM FOR SINGLE CONSTRAINT MAXIMUM COLLECTION PROBLEM , 1988 .

[127]  Dirk Cattrysse,et al.  A Memetic Algorithm for the Orienteering Problem with Intermediate Facilities , 2013 .

[128]  Amit Kumar,et al.  Maximum Coverage Problem with Group Budget Constraints and Applications , 2004, APPROX-RANDOM.

[129]  Edward P. K. Tsang,et al.  Guided local search and its application to the traveling salesman problem , 1999, Eur. J. Oper. Res..

[130]  Michel Gendreau,et al.  The orienteering problem with stochastic travel and service times , 2011, Ann. Oper. Res..

[131]  F. Spieksma On the approximability of an interval scheduling problem , 1999 .

[132]  Michel Gendreau,et al.  A branch-and-cut algorithm for the undirected selective traveling salesman problem , 1998, Networks.

[133]  Lúcia Maria de A. Drummond,et al.  A parallel heuristic for the Vehicle Routing Problem with Simultaneous Pickup and Delivery , 2010, Comput. Oper. Res..

[134]  Richard F. Hartl,et al.  Pareto Ant Colony Optimization: A Metaheuristic Approach to Multiobjective Portfolio Selection , 2004, Ann. Oper. Res..

[135]  Zuren Feng,et al.  Ants can solve the team orienteering problem , 2008, Comput. Ind. Eng..

[136]  Cristina Zoltan,et al.  Privatized rural postman problems , 2006, Comput. Oper. Res..

[137]  Andrew Lim,et al.  An adaptive ejection pool with toggle-rule diversification approach for the capacitated team orienteering problem , 2013, Eur. J. Oper. Res..