Kernel-Based On-Line Object Tracking Combining both Local Description and Global Representation

[1]  Vincent Lepetit,et al.  Randomized trees for real-time keypoint recognition , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[2]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[3]  Yoichi Sato,et al.  Combining Stochastic and Deterministic Search for Pose-Invariant Facial Expression Recognition , 2008, BMVC.

[4]  Javier R. Movellan,et al.  Monocular head pose estimation using generalized adaptive view-based appearance model , 2010, Image Vis. Comput..

[5]  Takahiro Ishikawa,et al.  The template update problem , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[7]  Guijin Wang,et al.  Scale and rotation invariant feature-based object tracking via modified on-line boosting , 2010, 2010 IEEE International Conference on Image Processing.

[8]  Guijin Wang,et al.  A new framework for on-line object tracking based on SURF , 2011, Pattern Recognit. Lett..

[9]  Simon Baker,et al.  Lucas-Kanade 20 Years On: A Unifying Framework , 2004, International Journal of Computer Vision.

[10]  Horst Bischof,et al.  Semi-supervised On-Line Boosting for Robust Tracking , 2008, ECCV.