Rhodopsin crystal: new template yielding realistic models of G-protein-coupled receptors?

[1]  F. Monsma,et al.  Molecular modeling and site-specific mutagenesis of the histamine-binding site of the histamine H4 receptor. , 2002, Molecular pharmacology.

[2]  S. Mitaku,et al.  Identification of G protein‐coupled receptor genes from the human genome sequence , 2002, FEBS letters.

[3]  Philippe Manivet,et al.  The serotonin binding site of human and murine 5-HT2B receptors: molecular modeling and site-directed mutagenesis. , 2002, The Journal of biological chemistry.

[4]  T. Lybrand,et al.  Refinement of the conformation of a critical region of charge-charge interaction between cholecystokinin and its receptor. , 2002, Molecular pharmacology.

[5]  T. Sakmar,et al.  Structure of rhodopsin and the superfamily of seven-helical receptors: the same and not the same. , 2002, Current opinion in cell biology.

[6]  B. Maigret,et al.  The Biologically Crucial C Terminus of Cholecystokinin and the Non-peptide Agonist SR-146,131 Share a Common Binding Site in the Human CCK1 Receptor , 2002, The Journal of Biological Chemistry.

[7]  J. Saldanha,et al.  Seven-transmembrane receptors: crystals clarify. , 2002, Trends in pharmacological sciences.

[8]  R. Neubig,et al.  NMR Structure of the Second Intracellular Loop of the α2A Adrenergic Receptor: Evidence for a Novel Cytoplasmic Helix†,‡ , 2002 .

[9]  Alan Wise,et al.  Target validation of G-protein coupled receptors. , 2002, Drug discovery today.

[10]  M. Goodman,et al.  NMR and modeling studies of a synthetic extracellular loop II of the kappa opioid receptor in a DPC micelle. , 2002, Biochemistry.

[11]  D. Mierke,et al.  Intermolecular interactions between cholecystokinin-8 and the third extracellular loop of the cholecystokinin-2 receptor. , 2001, Biochemistry.

[12]  K. Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2002, Chembiochem : a European journal of chemical biology.

[13]  B. Maigret,et al.  Control of Conformational Equilibria in the Human B2 Bradykinin Receptor , 2001, The Journal of Biological Chemistry.

[14]  E. Meng,et al.  Receptor activation: what does the rhodopsin structure tell us? , 2001, Trends in pharmacological sciences.

[15]  J Bajorath,et al.  Rational drug discovery revisited: interfacing experimental programs with bio- and chemo-informatics. , 2001, Drug discovery today.

[16]  J. Ballesteros,et al.  Structural mimicry in G protein-coupled receptors: implications of the high-resolution structure of rhodopsin for structure-function analysis of rhodopsin-like receptors. , 2001, Molecular pharmacology.

[17]  K. Palczewski,et al.  Activation of rhodopsin: new insights from structural and biochemical studies. , 2001, Trends in biochemical sciences.

[18]  G. Mcallister,et al.  Orphan G-protein-coupled receptors and natural ligand discovery. , 2001, Trends in pharmacological sciences.

[19]  Timothy B. Stockwell,et al.  The Sequence of the Human Genome , 2001, Science.

[20]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[21]  R. Osman,et al.  Minireview: Insights into G Protein-Coupled Receptor Function Using Molecular Models* * The work from our laboratories was supported by USPHS Grant DK-43036. , 2001, Endocrinology.

[22]  J. Drews Drug discovery: a historical perspective. , 2000, Science.

[23]  X. Dumont,et al.  Essential role of extracellular charged residues of the human CCK(1) receptor for interactions with SR 146131, SR 27897 and CCK-8S. , 2000, European journal of pharmacology.

[24]  B. Maigret,et al.  Arginine 197 of the cholecystokinin‐A receptor binding site interacts with the sulfate of the peptide agonist cholecystokinin , 2008, Protein science : a publication of the Protein Society.

[25]  M. Pellegrini,et al.  Molecular complex of cholecystokinin-8 and N-terminus of the cholecystokinin A receptor by NMR spectroscopy. , 1999, Biochemistry.

[26]  P. Ferrara,et al.  Contrasting roles of leu(356) in the human CCK(1) receptor for antagonist SR 27897 and agonist SR 146131 binding. , 1999, European journal of pharmacology.

[27]  B. Maigret,et al.  Evidence for a Direct Interaction between the Penultimate Aspartic Acid of Cholecystokinin and Histidine 207, Located in the Second Extracellular Loop of the Cholecystokinin B Receptor* , 1999, The Journal of Biological Chemistry.

[28]  B. Maigret,et al.  Arginine 336 and Asparagine 333 of the Human Cholecystokinin-A Receptor Binding Site Interact with the Penultimate Aspartic Acid and the C-terminal Amide of Cholecystokinin* , 1999, The Journal of Biological Chemistry.

[29]  Fabien Campagne,et al.  Visualisation and integration of G protein-coupled receptor related information help the modelling: Description and applications of the Viseur program , 1999, J. Comput. Aided Mol. Des..

[30]  J. Bockaert,et al.  Molecular tinkering of G protein‐coupled receptors: an evolutionary success , 1999, The EMBO journal.

[31]  B. Maigret,et al.  Met-195 of the Cholecystokinin-A Receptor Interacts with the Sulfated Tyrosine of Cholecystokinin and Is Crucial for Receptor Transition to High Affinity State* , 1998, The Journal of Biological Chemistry.

[32]  Gebhard F. X. Schertler,et al.  Arrangement of rhodopsin transmembrane α-helices , 1997, Nature.

[33]  A. IJzerman,et al.  Mutational analysis of the putative devazepide binding site of the CCK(A) receptor. , 1997, European journal of pharmacology.

[34]  B. Maigret,et al.  Identification of Two Amino Acids of the Human Cholecystokinin-A Receptor That Interact with the N-terminal Moiety of Cholecystokinin* , 1997, The Journal of Biological Chemistry.

[35]  T. Schwartz,et al.  Connectivity and orientation of the seven helical bundle in the tachykinin NK‐1 receptor probed by zinc site engineering. , 1996, The EMBO journal.

[36]  P. Hargrave,et al.  Projection structure of frog rhodopsin in two crystal forms. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[37]  N. Vaysse,et al.  Photoaffinity labeling of rat pancreatic cholecystokinin type A receptor antagonist binding sites demonstrates the presence of a truncated cholecystokinin type A receptor. , 1994, Molecular pharmacology.

[38]  J. Baldwin The probable arrangement of the helices in G protein‐coupled receptors. , 1993, The EMBO journal.

[39]  F. Corpet Multiple sequence alignment with hierarchical clustering. , 1988, Nucleic acids research.

[40]  R. Henderson,et al.  Three-dimensional model of purple membrane obtained by electron microscopy , 1975, Nature.