New Physics Opportunities in the Boosted Di-Higgs-Boson Plus Missing Transverse Energy Signature.

The Higgs field in the standard model may couple to new physics sectors related to dark matter and/or massive neutrinos. In this Letter we propose a novel signature, the boosted di-Higgs-boson plus E_{T} (which is either a dark matter or neutrino), to probe those new physics sectors. In a large class of models, in particular, the supersymmetric standard models and low scale seesaw mechanisms, this signature can play a key role. The signature has a clear background, and at the sqrt[s]=14  TeV high luminosity LHC, we can probe it with a production rate as low as ∼0.1  fb. We apply it to benchmark models, supersymmetry in the bino-Higgsino limit, the canonical seesaw model, and the little Higgs model, finding that the masses of the Higgsino, right-handed neutrino, and heavy vector boson can be probed up to ∼500, 650, and 900 GeV, respectively.

[1]  S. Khalil,et al.  Signatures for right-handed neutrinos at the large hadron collider. , 2008, Physical review letters.

[2]  D. Ghosh,et al.  Probing the NMSSM via Higgs boson signatures from stop cascade decays at the LHC , 2015, 1503.07592.

[3]  Veronica Sanz,et al.  Scale-invariant resonance tagging in multijet events and new physics in Higgs pair production , 2013, 1303.6636.

[4]  G. M. Pruna,et al.  Theoretical constraints on the couplings of non-exotic minimal Z′ bosons , 2011, 1106.4762.

[5]  Jinmian Li,et al.  On naturalness of the MSSM and NMSSM , 2012, Journal of High Energy Physics.

[6]  M. Cacciari,et al.  FastJet user manual , 2011, 1111.6097.

[7]  H. Murayama,et al.  Small Neutrino Masses from Supersymmetry Breaking , 2000, hep-ph/0006312.

[8]  Atlas Collaboration Constraints on new phenomena via Higgs boson couplings and invisible decays with the ATLAS detector , 2015, 1509.00672.

[9]  A. Barr,et al.  m(T2): The Truth behind the glamour , 2003, hep-ph/0304226.

[10]  Matthew J. Dolan,et al.  Higgs self-coupling measurements at the LHC , 2012, 1206.5001.

[11]  Zhao Li,et al.  Probe Higgs boson pair production via the 3ℓ2j + missing ET mode , 2015, 1503.07611.

[12]  CMS Collaboration Search for resonant pair production of Higgs bosons decaying to two bottom quark-antiquark pairs in proton-proton collisions at 8 TeV , 2015 .

[13]  Chan Beom Park,et al.  Resonant Higgs boson pair production in the hh→bb¯WW→bb¯ℓ+νℓ−ν¯ decay channel , 2015 .

[14]  James D. Wells,et al.  How well do we need to measure the Higgs boson mass and self-coupling? , 2013, 1305.6397.

[15]  Ian Low,et al.  Double take on new physics in double Higgs boson production , 2014, 1405.7040.

[16]  Kiwoon Choi,et al.  Light Dirac right-handed sneutrino dark matter , 2013, 1305.4322.

[17]  M. Backovic,et al.  Boosted event topologies from TeV scale light quark composite partners , 2014, 1410.8131.

[18]  G. Aad,et al.  Search for high-mass dilepton resonances in pp collisions at with the ATLAS detector , 2014 .

[19]  Matthew J. Dolan,et al.  New physics in LHC Higgs boson pair production , 2012, 1210.8166.

[20]  P. Maierhöfer,et al.  Higgs boson pair production merged to one jet , 2013, 1401.0007.

[21]  C.G.Lester,et al.  Measuring masses of semi-invisibly decaying particles pair produced at hadron colliders , 1999, hep-ph/9906349.

[22]  Claude Duhr,et al.  FeynRules 2.0 - A complete toolbox for tree-level phenomenology , 2013, Comput. Phys. Commun..

[23]  Guo-Zhu Ning,et al.  Highlights of supersymmetric hypercharge ±1 triplets , 2013, 1301.2204.

[24]  S. Kraml,et al.  Light mixed sneutrinos as thermal dark matter , 2010, 1008.0580.

[25]  J. Favereau,et al.  DELPHES 3: a modular framework for fast simulation of a generic collider experiment , 2013, Journal of High Energy Physics.

[26]  Q. Yan,et al.  Detecting light stop pairs in coannihilation scenarios at the LHC , 2012, 1211.2997.

[27]  Gunion,et al.  Two-body decays of neutralinos and charginos. , 1988, Physical review. D, Particles and fields.

[28]  J. Butterworth,et al.  Jet substructure as a new Higgs-search channel at the Large Hadron Collider. , 2008, Physical review letters.

[29]  Li Lin Yang,et al.  Precision predictions for the t t ̄ production cross section at hadron colliders , 2011, 1105.5824.

[30]  S. P. Martin,et al.  Compressed supersymmetry after 1/fb at the Large Hadron Collider , 2011, 1111.6897.

[31]  S. Moretti,et al.  Better jet clustering algorithms , 1997, hep-ph/9707323.

[32]  K. Perez,et al.  Performance of Missing Transverse Momentum Reconstruction in Proton-Proton , 2011, 1108.5602.

[33]  G. Aad Search for Higgs Boson Pair Production in the γγb ¯ b Final State Using pp Collision Data at ffiffi , 2015 .

[34]  T. Han,et al.  The Search for Heavy Majorana Neutrinos , 2009, 0901.3589.

[35]  Jun Guo,et al.  Higgs boson mass and complex sneutrino dark matter in the supersymmetric inverse seesaw models , 2013, 1311.3497.

[36]  Matthias Steinhauser,et al.  On the Higgs boson pair production at the LHC , 2013, 1305.7340.

[37]  F. Maltoni,et al.  MadGraph 5: going beyond , 2011, 1106.0522.

[38]  P. Ko,et al.  New Avenues to Heavy Right-handed Neutrinos with Pair Production at Hadronic Colliders , 2015, 1512.08373.

[39]  S. Mrenna,et al.  Pythia 6.3 physics and manual , 2003, hep-ph/0308153.

[40]  Patrick Meade,et al.  Phenomenology of the littlest Higgs model with T-parity , 2005 .

[41]  Little hierarchy, little higgses, and a little symmetry , 2004, hep-ph/0405243.

[42]  P. Dev,et al.  Neutrinos and collider physics , 2015, 1502.06541.

[43]  S. Caron,et al.  UvA-DARE (Digital Academic Repository) Higgs, di-Higgs and tri-Higgs production via SUSY processes at the LHC with 14 TeV , 2015 .

[44]  Andreas Papaefstathiou,et al.  Higgs boson self-coupling measurements using ratios of cross sections , 2013, 1301.3492.

[45]  Li Lin Yang,et al.  Higgs boson pair production at the LHC in the $b \bar{b} W^+ W^-$ channel , 2012, 1209.1489.

[46]  U. Ellwanger Higgs pair production in the NMSSM at the LHC , 2013, 1306.5541.

[47]  Jinmian Li,et al.  LHC searches for the C P -odd Higgs boson with a jet substructure analysis , 2014, 1410.4447.

[48]  Jin-zhong Han,et al.  Enhancing $t\bar{t}hh$ production through CP-violating top-Higgs interaction at the LHC, ILC and a 100 TeV collider , 2015, 1503.08537.

[49]  G. M. Pruna,et al.  Phenomenology of the minimal B ? L extension of the Standard Model at the LHC , 2011, 1106.4462.

[50]  Sunghoon Jung Resolving the existence of Higgsinos in the LHC inverse problem , 2014, 1404.2691.

[51]  R. K. Ellis,et al.  Next-to-leading order QCD predictions for $W$ + 2 jet and $Z$ + 2 jet production at the CERN LHC , 2003 .

[52]  Luke Lambourne,et al.  Boosted $hh \rightarrow b\bar{b}b\bar{b}$: a new topology in searches for TeV-scale resonances at the LHC , 2013, 1307.0407.

[53]  Yi-Fu Cai,et al.  Sneutrino dark matter in gauged inverse seesaw models for neutrinos. , 2011, Physical review letters.