THE VERTICAL MOTIONS OF MONO-ABUNDANCE SUB-POPULATIONS IN THE MILKY WAY DISK

We present the vertical kinematics of stars in the Milky Way's stellar disk inferred from Sloan Digital Sky Survey/Sloan Extension for Galactic Understanding and Exploration (SDSS/SEGUE) G-dwarf data, deriving the vertical velocity dispersion, {sigma}{sub z}, as a function of vertical height |z| and Galactocentric radius R for a set of 'mono-abundance' sub-populations of stars with very similar elemental abundances [{alpha}/Fe] and [Fe/H]. We find that all mono-abundance components exhibit nearly isothermal kinematics in |z|, and a slow outward decrease of the vertical velocity dispersion: {sigma}{sub z}(z, R | [{alpha}/Fe], [Fe/H]) Almost-Equal-To {sigma}{sub z}([{alpha}/Fe], [Fe/H]) Multiplication-Sign exp (- (R - R{sub 0})/7 kpc). The characteristic velocity dispersions of these components vary from {approx}15 km s{sup -1} for chemically young, metal-rich stars with solar [{alpha}/Fe], to {approx}> 50 km s{sup -1} for metal-poor stars that are strongly [{alpha}/Fe]-enhanced, and hence presumably very old. The mean {sigma}{sub z} gradient (d{sigma}{sub z}/dz) away from the mid-plane is only 0.3 {+-} 0.2 km s{sup -1} kpc{sup -1}. This kinematic simplicity of the mono-abundance components mirrors their geometric simplicity; we have recently found their density distribution to be simple exponentials in both the z- and R-directions. We find a continuum of vertical kinetic temperatures ({proportional_to}{sigma}{sup 2}{submore » z}) as a function of ([{alpha}/Fe], [Fe/H]), which contribute to the total stellar surface-mass density approximately as {Sigma}{sub R{sub 0}}({sigma}{sup 2}{sub z}){proportional_to} exp(-{sigma}{sup 2}{sub z}). This and the existence of isothermal mono-abundance populations with intermediate dispersions (30-40 km s{sup -1}) reject the notion of a thin-thick-disk dichotomy. This continuum of disk components, ranging from old, 'hot', and centrally concentrated ones to younger, cooler, and radially extended ones, argues against models where the thicker disk portions arise from massive satellite infall or heating; scenarios where either the oldest disk portion was born hot, or where internal evolution plays a major role, seem the most viable. In addition, the wide range of {sigma}{sub z}([{alpha}/Fe], [Fe/H]) combined with a constant {sigma}{sub z}(z) for each abundance bin provides an independent check on the precision of the SEGUE-derived abundances: {delta}{sub [{alpha}/Fe]} Almost-Equal-To 0.07 dex and {delta}{sub [Fe/H]} Almost-Equal-To 0.15 dex. The slow radial decline of the vertical dispersion presumably reflects the decrease in disk surface-mass density. This measurement constitutes a first step toward a purely dynamical estimate of the mass profile of the stellar and gaseous disk in our Galaxy.« less

[1]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[2]  The Galactic Thick Disk Stellar Abundances , 2000, astro-ph/0008075.

[3]  Ž. Ivezić,et al.  FORMATION AND EVOLUTION OF THE DISK SYSTEM OF THE MILKY WAY: [α/Fe] RATIOS AND KINEMATICS OF THE SEGUE G-DWARF SAMPLE , 2011, 1104.3114.

[4]  T. Beers,et al.  THE SEGUE STELLAR PARAMETER PIPELINE. IV. VALIDATION WITH AN EXTENDED SAMPLE OF GALACTIC GLOBULAR AND OPEN CLUSTERS , 2010, 1008.1959.

[5]  Mamoru Doi,et al.  The Milky Way Tomography with SDSS. II. Stellar Metallicity , 2008, 0804.3850.

[6]  Heidi Jo Newberg,et al.  SEGUE: A SPECTROSCOPIC SURVEY OF 240,000 STARS WITH g = 14–20 , 2009, 0902.1781.

[7]  S. Feltzing,et al.  Signatures of SN Ia in the galactic thick disk. Observational evidence from alpha -elements in 67 dw , 2003 .

[8]  H. Rix,et al.  THE KINEMATICS OF LATE-TYPE STARS IN THE SOLAR CYLINDER STUDIED WITH SDSS DATA , 2009, 0902.2324.

[9]  H. Rix,et al.  THE SPATIAL STRUCTURE OF MONO-ABUNDANCE SUB-POPULATIONS OF THE MILKY WAY DISK , 2011, 1111.1724.

[10]  Iain Murray,et al.  DYNAMICAL INFERENCE FROM A KINEMATIC SNAPSHOT: THE FORCE LAW IN THE SOLAR SYSTEM , 2009, 0903.5308.

[11]  D. York,et al.  Stellar Population Studies with the SDSS. I. The Vertical Distribution of Stars in the Milky Way , 2001 .

[12]  Australian National University,et al.  THE SEGUE STELLAR PARAMETER PIPELINE. I. DESCRIPTION AND COMPARISON OF INDIVIDUAL METHODS , 2007, 0710.5645.

[13]  M. Steinmetz,et al.  Simulations of Galaxy Formation in a Λ Cold Dark Matter Universe. I. Dynamical and Photometric Properties of a Simulated Disk Galaxy , 2002, astro-ph/0211331.

[14]  Jonathan R Goodman,et al.  Ensemble samplers with affine invariance , 2010 .

[15]  Thomas Bensby,et al.  Elemental abundance trends in the Galactic thin and thick disks as traced by nearby F and G dwarf stars , 2003 .

[16]  Shy Genel,et al.  THE SINS SURVEY: SINFONI INTEGRAL FIELD SPECTROSCOPY OF z ∼ 2 STAR-FORMING GALAXIES , 2009, 0903.1872.

[17]  Chao Liu,et al.  Chemo-orbital evidence from SDSS/SEGUE G-type dwarf stars for a mixed origin of the Milky Way's thick disk , 2012, 1201.1635.

[18]  Ž. Ivezić,et al.  THE GENESIS OF THE MILKY WAY'S THICK DISK VIA STELLAR MIGRATION , 2010, 1009.5997.

[19]  David Schlegel,et al.  The Milky Way Tomography with SDSS. I. Stellar Number Density Distribution , 2005, astro-ph/0510520.

[20]  Konrad Kuijken,et al.  The mass distribution in the galactic disc – II. Determination of the surface mass density of the galactic disc near the Sun , 1989 .

[21]  The Emergence of the Thick Disk in a Cold Dark Matter Universe , 2004, astro-ph/0405306.

[22]  B. Yanny,et al.  Submitted for publication in the Astronomical Journal The SEGUE Stellar Parameter Pipeline. III. Comparison with High-Resolution Spectroscopy of SDSS/SEGUE Field Stars 1 , 2022 .

[23]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[24]  M. Krumholz,et al.  Evolving gravitationally unstable disks over cosmic time: implications for thick disk formation , 2011, 1112.1410.

[25]  David W. Hogg,et al.  THE MILKY WAY HAS NO DISTINCT THICK DISK , 2011, 1111.6585.

[26]  J. Bird,et al.  INSIDE OUT AND UPSIDE DOWN: TRACING THE ASSEMBLY OF A SIMULATED DISK GALAXY USING MONO-AGE STELLAR POPULATIONS , 2013, 1301.0620.

[27]  James Binney,et al.  Chemical evolution with radial mixing , 2008, 0809.3006.

[28]  Z. Ivezic,et al.  THE MILKY WAY TOMOGRAPHY WITH SDSS. III. STELLAR KINEMATICS , 2009, 0909.0013.

[29]  M. Martig,et al.  THE THICK DISKS OF SPIRAL GALAXIES AS RELICS FROM GAS-RICH, TURBULENT, CLUMPY DISKS AT HIGH REDSHIFT , 2009, 0910.3677.

[30]  Kinematics of Metal-poor Stars in the Galaxy. III. Formation of the Stellar Halo and Thick Disk as Revealed from a Large Sample of Nonkinematically Selected Stars , 2000, astro-ph/0003087.

[31]  A. Helmi,et al.  Simulations of minor mergers - I. General properties of thick discs , 2008, 0803.2323.

[32]  David K. Lai,et al.  THE SEGUE STELLAR PARAMETER PIPELINE. V. ESTIMATION OF ALPHA-ELEMENT ABUNDANCE RATIOS FROM LOW-RESOLUTION SDSS/SEGUE STELLAR SPECTRA , 2010, 1010.2934.

[33]  Density of Matter in the Galactic Disk , 1995 .

[34]  H. Rix,et al.  GALACTIC MASERS AND THE MILKY WAY CIRCULAR VELOCITY , 2009, 0907.5423.

[35]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[36]  David G. Monet,et al.  An Improved Proper-Motion Catalog Combining USNO-B and the Sloan Digital Sky Survey , 2004 .

[37]  T. Beers,et al.  BINARY CONTAMINATION IN THE SEGUE SAMPLE: EFFECTS ON SSPP DETERMINATIONS OF STELLAR ATMOSPHERIC PARAMETERS , 2010, 1002.0001.

[38]  Australian National University,et al.  THE SEGUE STELLAR PARAMETER PIPELINE. II. VALIDATION WITH GALACTIC GLOBULAR AND OPEN CLUSTERS , 2007, 0710.5778.