An Intuitionistic Logic that Proves Markov's Principle

We design an intuitionistic predicate logic that supports a limited amount of classical reasoning, just enough to prove a variant of Markov's principle suited for predicate logic. At the computational level, the extraction of an existential witness out of a proof of its double negation is done by using a form of statically-bound exception mechanism, what can be seen as a direct-style variant of Friedman's A-translation.

[1]  Ulrich Kohlenbach,et al.  Applied Proof Theory - Proof Interpretations and their Use in Mathematics , 2008, Springer Monographs in Mathematics.

[2]  Wim Veldman An Intuitionistic Completeness Theorem for Intuitionistic Predicate Logic , 1976, J. Symb. Log..

[3]  Christian Urban Classical Logic and Computation , 2000 .

[4]  Stephen Cole Kleene,et al.  On the interpretation of intuitionistic number theory , 1945, Journal of Symbolic Logic.

[5]  Stefano Berardi,et al.  A Symmetric Lambda Calculus for Classical Program Extraction , 1994, Inf. Comput..

[6]  René David,et al.  Arithmetical Proofs of Strong Normalization Results for Symmetric ?-calculi , 2007, Fundam. Informaticae.

[7]  Tristan Crolard A confluent lambda-calculus with a catch/throw mechanism , 1999, J. Funct. Program..

[8]  Thomas Ehrhard,et al.  Differential Interaction Nets , 2005, WoLLIC.

[9]  Matthias Felleisen,et al.  The theory and practice of first-class prompts , 1988, POPL '88.

[10]  R. M. Martin Twenty-Third Annual Meeting of the Association for Symbolic Logic , 1958, J. Symb. Log..

[11]  Chetan R. Murthy Extracting Constructive Content From Classical Proofs , 1990 .

[12]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[13]  Vincent Danos,et al.  A new deconstructive logic: linear logic , 1997, Journal of Symbolic Logic.

[14]  A. Troelstra Metamathematical investigation of intuitionistic arithmetic and analysis , 1973 .

[15]  Emmanuel Polonovski Subsitutions explicites, logique et normalisation , 2004 .

[16]  Timothy G. Griffin,et al.  A formulae-as-type notion of control , 1989, POPL '90.

[17]  Stefano Berardi,et al.  Krivine's intuitionistic proof of classical completeness (for countable languages) , 2004, Ann. Pure Appl. Log..

[18]  Tristan Crolard Extension de l'isomorphisme de curry-howard au traitement des exceptions (application d'une etude de la dualite en logique intuitionniste) , 1996 .

[19]  Jean Gallier,et al.  Ann. Pure Appl. Logic , 1997 .

[20]  William A. Howard,et al.  The formulae-as-types notion of construction , 1969 .

[21]  D. Prawitz Natural Deduction: A Proof-Theoretical Study , 1965 .

[22]  Michel Parigot,et al.  Lambda-Mu-Calculus: An Algorithmic Interpretation of Classical Natural Deduction , 1992, LPAR.

[23]  J. Roger Hindley,et al.  To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism , 1980 .

[24]  Hiroshi Nakano A constructive formalization of the catch and throw mechanism , 1992, [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science.

[25]  Ulrich Berger,et al.  A computational interpretation of open induction , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[26]  Martin Hofmann,et al.  A new method for establishing conservativity of classical systems over their intuitionistic version , 1999, Mathematical Structures in Computer Science.

[27]  Hugo Herbelin,et al.  Minimal Classical Logic and Control Operators , 2003, ICALP.

[28]  Hugo Herbelin,et al.  The duality of computation , 2000, ICFP '00.

[29]  Harvey M. Friedman,et al.  Classically and intuitionistically provably recursive functions , 1978 .

[30]  Tristan Crolard A confluent λ-calculus with a catch/throw mechanism , 1999 .

[31]  Von Kurt Gödel,et al.  ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG DES FINITEN STANDPUNKTES , 1958 .