An Intuitionistic Logic that Proves Markov's Principle
暂无分享,去创建一个
[1] Ulrich Kohlenbach,et al. Applied Proof Theory - Proof Interpretations and their Use in Mathematics , 2008, Springer Monographs in Mathematics.
[2] Wim Veldman. An Intuitionistic Completeness Theorem for Intuitionistic Predicate Logic , 1976, J. Symb. Log..
[3] Christian Urban. Classical Logic and Computation , 2000 .
[4] Stephen Cole Kleene,et al. On the interpretation of intuitionistic number theory , 1945, Journal of Symbolic Logic.
[5] Stefano Berardi,et al. A Symmetric Lambda Calculus for Classical Program Extraction , 1994, Inf. Comput..
[6] René David,et al. Arithmetical Proofs of Strong Normalization Results for Symmetric ?-calculi , 2007, Fundam. Informaticae.
[7] Tristan Crolard. A confluent lambda-calculus with a catch/throw mechanism , 1999, J. Funct. Program..
[8] Thomas Ehrhard,et al. Differential Interaction Nets , 2005, WoLLIC.
[9] Matthias Felleisen,et al. The theory and practice of first-class prompts , 1988, POPL '88.
[10] R. M. Martin. Twenty-Third Annual Meeting of the Association for Symbolic Logic , 1958, J. Symb. Log..
[11] Chetan R. Murthy. Extracting Constructive Content From Classical Proofs , 1990 .
[12] Patrick Lincoln,et al. Linear logic , 1992, SIGA.
[13] Vincent Danos,et al. A new deconstructive logic: linear logic , 1997, Journal of Symbolic Logic.
[14] A. Troelstra. Metamathematical investigation of intuitionistic arithmetic and analysis , 1973 .
[15] Emmanuel Polonovski. Subsitutions explicites, logique et normalisation , 2004 .
[16] Timothy G. Griffin,et al. A formulae-as-type notion of control , 1989, POPL '90.
[17] Stefano Berardi,et al. Krivine's intuitionistic proof of classical completeness (for countable languages) , 2004, Ann. Pure Appl. Log..
[18] Tristan Crolard. Extension de l'isomorphisme de curry-howard au traitement des exceptions (application d'une etude de la dualite en logique intuitionniste) , 1996 .
[19] Jean Gallier,et al. Ann. Pure Appl. Logic , 1997 .
[20] William A. Howard,et al. The formulae-as-types notion of construction , 1969 .
[21] D. Prawitz. Natural Deduction: A Proof-Theoretical Study , 1965 .
[22] Michel Parigot,et al. Lambda-Mu-Calculus: An Algorithmic Interpretation of Classical Natural Deduction , 1992, LPAR.
[23] J. Roger Hindley,et al. To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism , 1980 .
[24] Hiroshi Nakano. A constructive formalization of the catch and throw mechanism , 1992, [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science.
[25] Ulrich Berger,et al. A computational interpretation of open induction , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..
[26] Martin Hofmann,et al. A new method for establishing conservativity of classical systems over their intuitionistic version , 1999, Mathematical Structures in Computer Science.
[27] Hugo Herbelin,et al. Minimal Classical Logic and Control Operators , 2003, ICALP.
[28] Hugo Herbelin,et al. The duality of computation , 2000, ICFP '00.
[29] Harvey M. Friedman,et al. Classically and intuitionistically provably recursive functions , 1978 .
[30] Tristan Crolard. A confluent λ-calculus with a catch/throw mechanism , 1999 .
[31] Von Kurt Gödel,et al. ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG DES FINITEN STANDPUNKTES , 1958 .