DIANA-miRPath v3.0: deciphering microRNA function with experimental support

The functional characterization of miRNAs is still an open challenge. Here, we present DIANA-miRPath v3.0 (http://www.microrna.gr/miRPathv3) an online software suite dedicated to the assessment of miRNA regulatory roles and the identification of controlled pathways. The new miRPath web server renders possible the functional annotation of one or more miRNAs using standard (hypergeometric distributions), unbiased empirical distributions and/or meta-analysis statistics. DIANA-miRPath v3.0 database and functionality have been significantly extended to support all analyses for KEGG molecular pathways, as well as multiple slices of Gene Ontology (GO) in seven species (Homo sapiens, Mus musculus, Rattus norvegicus, Drosophila melanogaster, Caenorhabditis elegans, Gallus gallus and Danio rerio). Importantly, more than 600 000 experimentally supported miRNA targets from DIANA-TarBase v7.0 have been incorporated into the new schema. Users of DIANA-miRPath v3.0 can harness this wealth of information and substitute or combine the available in silico predicted targets from DIANA-microT-CDS and/or TargetScan v6.2 with high quality experimentally supported interactions. A unique feature of DIANA-miRPath v3.0 is its redesigned Reverse Search module, which enables users to identify and visualize miRNAs significantly controlling selected pathways or belonging to specific GO categories based on in silico or experimental data. DIANA-miRPath v3.0 is freely available to all users without any login requirement.

[1]  Lin He,et al.  mir-17-92, a cluster of miRNAs in the midst of the cancer network. , 2010, The international journal of biochemistry & cell biology.

[2]  Timos K. Sellis,et al.  mirPub: a database for searching microRNA publications , 2014, Bioinform..

[3]  Fabian J Theis,et al.  miTALOS: analyzing the tissue-specific regulation of signaling pathways by human and mouse microRNAs. , 2011, RNA.

[4]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[5]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[6]  Chris Mungall,et al.  AmiGO: online access to ontology and annotation data , 2008, Bioinform..

[7]  Ioannis S Vlachos,et al.  Online resources for miRNA analysis. , 2013, Clinical biochemistry.

[8]  Hsien-Da Huang,et al.  miRTar: an integrated system for identifying miRNA-target interactions in human , 2011, BMC Bioinformatics.

[9]  X. Wu,et al.  CORNA: testing gene lists for regulation by microRNAs , 2009, Bioinform..

[10]  C. Bracken,et al.  Experimental strategies for microRNA target identification , 2011, Nucleic acids research.

[11]  D. Bartel,et al.  Weak Seed-Pairing Stability and High Target-Site Abundance Decrease the Proficiency of lsy-6 and Other miRNAs , 2011, Nature Structural &Molecular Biology.

[12]  Martin Kuiper,et al.  OLSVis: an animated, interactive visual browser for bio-ontologies , 2011, BMC Bioinformatics.

[13]  Rachael P. Huntley,et al.  QuickGO: a web-based tool for Gene Ontology searching , 2009, Bioinform..

[14]  Hui Zhou,et al.  starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data , 2013, Nucleic Acids Res..

[15]  Athanasios Fevgas,et al.  DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions , 2014, Nucleic Acids Res..

[16]  M. Peter,et al.  Targeting of mRNAs by multiple miRNAs: the next step , 2010, Oncogene.

[17]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[18]  Sam Griffiths-Jones,et al.  Bias in microRNA functional enrichment analysis , 2015, Bioinform..

[19]  Ana Kozomara,et al.  miRBase: annotating high confidence microRNAs using deep sequencing data , 2013, Nucleic Acids Res..

[20]  Martin Reczko,et al.  DIANA-LncBase: experimentally verified and computationally predicted microRNA targets on long non-coding RNAs , 2012, Nucleic Acids Res..

[21]  Martin Reczko,et al.  DIANA-mirPath: Integrating human and mouse microRNAs in pathways , 2009, Bioinform..

[22]  Martin Reczko,et al.  DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows , 2013, Nucleic Acids Res..

[23]  Douglas A. Hosack,et al.  Identifying biological themes within lists of genes with EASE , 2003, Genome Biology.

[24]  Elizabeth M. Smigielski,et al.  dbSNP: the NCBI database of genetic variation , 2001, Nucleic Acids Res..

[25]  Martin Reczko,et al.  DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways , 2012, Nucleic Acids Res..

[26]  Alessandro Vullo,et al.  Ensembl 2015 , 2014, Nucleic Acids Res..

[27]  E. Izaurralde,et al.  Gene silencing by microRNAs: contributions of translational repression and mRNA decay , 2011, Nature Reviews Genetics.

[28]  Deborah A. Siegele,et al.  GONUTS: the Gene Ontology Normal Usage Tracking System , 2011, Nucleic Acids Res..

[29]  Susumu Goto,et al.  Data, information, knowledge and principle: back to metabolism in KEGG , 2013, Nucleic Acids Res..